Suppr超能文献

跨不同表示形式的复杂生物系统的贝叶斯元建模。

Bayesian metamodeling of complex biological systems across varying representations.

机构信息

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158.

Quantitative Biosciences Institute, University of California, San Francisco, CA 94158.

出版信息

Proc Natl Acad Sci U S A. 2021 Aug 31;118(35). doi: 10.1073/pnas.2104559118.

Abstract

Comprehensive modeling of a whole cell requires an integration of vast amounts of information on various aspects of the cell and its parts. To divide and conquer this task, we introduce Bayesian metamodeling, a general approach to modeling complex systems by integrating a collection of heterogeneous input models. Each input model can in principle be based on any type of data and can describe a different aspect of the modeled system using any mathematical representation, scale, and level of granularity. These input models are 1) converted to a standardized statistical representation relying on probabilistic graphical models, 2) coupled by modeling their mutual relations with the physical world, and 3) finally harmonized with respect to each other. To illustrate Bayesian metamodeling, we provide a proof-of-principle metamodel of glucose-stimulated insulin secretion by human pancreatic β-cells. The input models include a coarse-grained spatiotemporal simulation of insulin vesicle trafficking, docking, and exocytosis; a molecular network model of glucose-stimulated insulin secretion signaling; a network model of insulin metabolism; a structural model of glucagon-like peptide-1 receptor activation; a linear model of a pancreatic cell population; and ordinary differential equations for systemic postprandial insulin response. Metamodeling benefits from decentralized computing, while often producing a more accurate, precise, and complete model that contextualizes input models as well as resolves conflicting information. We anticipate Bayesian metamodeling will facilitate collaborative science by providing a framework for sharing expertise, resources, data, and models, as exemplified by the Pancreatic β-Cell Consortium.

摘要

全面建模一个完整的细胞需要整合大量关于细胞及其各部分的各个方面的信息。为了将这个任务分解并攻克,我们引入了贝叶斯元建模,这是一种通过整合一系列异构输入模型来对复杂系统进行建模的通用方法。每个输入模型原则上可以基于任何类型的数据,并使用任何数学表示、尺度和粒度来描述所建模系统的不同方面。这些输入模型 1)转换为依赖概率图形模型的标准化统计表示,2)通过建模它们与物理世界的相互关系进行耦合,以及 3)最后彼此之间进行协调。为了说明贝叶斯元建模,我们提供了一个人类胰腺β细胞葡萄糖刺激胰岛素分泌的原理验证元模型。输入模型包括胰岛素囊泡运输、 docking 和胞吐作用的粗粒度时空模拟;葡萄糖刺激胰岛素分泌信号转导的分子网络模型;胰岛素代谢的网络模型;胰高血糖素样肽-1 受体激活的结构模型;胰腺细胞群体的线性模型;以及餐后胰岛素系统反应的常微分方程。元建模受益于分散式计算,同时通常会产生更准确、更精确和更完整的模型,将输入模型置于上下文中,并解决冲突信息。我们预计贝叶斯元建模将通过提供一个共享专业知识、资源、数据和模型的框架来促进协作科学,正如胰腺β细胞联盟所例证的那样。

相似文献

3
From integrative structural biology to cell biology.从整合结构生物学到细胞生物学。
J Biol Chem. 2021 Jan-Jun;296:100743. doi: 10.1016/j.jbc.2021.100743. Epub 2021 May 4.
5
A scoping review of metamodeling applications and opportunities for advanced health economic analyses.元建模应用及高级卫生经济分析机会的范围综述。
Expert Rev Pharmacoecon Outcomes Res. 2019 Apr;19(2):181-187. doi: 10.1080/14737167.2019.1548279. Epub 2018 Nov 22.

引用本文的文献

6
Emerging maps of allosteric regulation in cellular networks.细胞网络中变构调节的新兴图谱。
Curr Opin Struct Biol. 2023 Jun;80:102602. doi: 10.1016/j.sbi.2023.102602. Epub 2023 May 5.
9
Integrative modeling of the cell.细胞的综合建模。
Acta Biochim Biophys Sin (Shanghai). 2022 Aug 25;54(9):1213-1221. doi: 10.3724/abbs.2022115.
10

本文引用的文献

4
From integrative structural biology to cell biology.从整合结构生物学到细胞生物学。
J Biol Chem. 2021 Jan-Jun;296:100743. doi: 10.1016/j.jbc.2021.100743. Epub 2021 May 4.
6
A Multi-Scale Approach to Modeling Chemotaxis.一种用于模拟趋化作用的多尺度方法。
Entropy (Basel). 2020 Sep 29;22(10):1101. doi: 10.3390/e22101101.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验