Suppr超能文献

基于强度的三维实例分割工具,用于软 X 射线断层图像中的细胞器分割。

An intensity-based post-processing tool for 3D instance segmentation of organelles in soft X-ray tomograms.

机构信息

iHuman Institute, ShanghaiTech University, Shanghai, China.

School of Life Science and Technology, ShanghaiTech University, Shanghai, China.

出版信息

PLoS One. 2022 Sep 1;17(9):e0269887. doi: 10.1371/journal.pone.0269887. eCollection 2022.

Abstract

Investigating the 3D structures and rearrangements of organelles within a single cell is critical for better characterizing cellular function. Imaging approaches such as soft X-ray tomography have been widely applied to reveal a complex subcellular organization involving multiple inter-organelle interactions. However, 3D segmentation of organelle instances has been challenging despite its importance in organelle characterization. Here we propose an intensity-based post-processing tool to identify and separate organelle instances. Our tool separates sphere-like (insulin vesicle) and columnar-shaped organelle instances (mitochondrion) based on the intensity of raw tomograms, semantic segmentation masks, and organelle morphology. We validate our tool using synthetic tomograms of organelles and experimental tomograms of pancreatic β-cells to separate insulin vesicle and mitochondria instances. As compared to the commonly used connected regions labeling, watershed, and watershed + Gaussian filter methods, our tool results in improved accuracy in identifying organelles in the synthetic tomograms and an improved description of organelle structures in β-cell tomograms. In addition, under different experimental treatment conditions, significant changes in volumes and intensities of both insulin vesicle and mitochondrion are observed in our instance results, revealing their potential roles in maintaining normal β-cell function. Our tool is expected to be applicable for improving the instance segmentation of other images obtained from different cell types using multiple imaging modalities.

摘要

研究单个细胞内细胞器的 3D 结构和重排对于更好地表征细胞功能至关重要。成像方法,如软 X 射线断层扫描,已被广泛应用于揭示涉及多个细胞器相互作用的复杂亚细胞组织。然而,尽管细胞器特征描述中需要进行 3D 分割,但这一任务仍然具有挑战性。在这里,我们提出了一种基于强度的后处理工具,用于识别和分离细胞器实例。我们的工具基于原始断层扫描的强度、语义分割掩模和细胞器形态,将球形(胰岛素囊泡)和柱状细胞器实例(线粒体)分离。我们使用细胞器的合成断层扫描和胰腺β细胞的实验断层扫描来验证我们的工具,以分离胰岛素囊泡和线粒体实例。与常用的连通区域标记、分水岭和分水岭+高斯滤波器方法相比,我们的工具在识别合成断层扫描中的细胞器方面具有更高的准确性,并能更好地描述β细胞断层扫描中的细胞器结构。此外,在不同的实验处理条件下,我们的实例结果中观察到胰岛素囊泡和线粒体的体积和强度都发生了显著变化,这揭示了它们在维持正常β细胞功能方面的潜在作用。我们的工具有望应用于通过多种成像模式改善从不同细胞类型获得的其他图像的实例分割。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d48/9436087/d0701e5b6c0e/pone.0269887.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验