Texas A&M University, Department of Biological and Agricultural Engineering, College Station, USA; Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
Sci Total Environ. 2022 Jan 1;802:149713. doi: 10.1016/j.scitotenv.2021.149713. Epub 2021 Aug 23.
Using the parameters associated with the best-fit simulation (i.e., the simulation with the highest objective function value) to represent a calibrated hydrological model is inadequate. The reason is that the calibrated models best objective function value is usually not significantly different from the next best value or the values after that. This non-uniqueness of the objective function values causes a problem because the best solution's parameters are often significantly different from the next best set of parameters. Therefore, only using the best simulation parameters as the calibrated model's sole parameters to interpret the watershed processes or perform further modeling analyses could produce misleading results. Furthermore, the lack of pristine watersheds makes the task of watershed-scale calibration increasingly challenging. Subjective thresholds of acceptable performance criteria suggested by some researchers, based on comparing the measured and the best solution signals, are often not achievable. Hence, to obtain a satisfactory fit, researchers and practitioners are often forced to compromise the science behind their work. This article discusses the fallacy in using the best-fit solution in hydrologic modeling. A two-factor statistic to assess the goodness of calibration/validation is discussed, considering model output uncertainty.
使用与最佳拟合模拟相关的参数(即目标函数值最高的模拟)来表示校准后的水文模型是不够的。原因是,校准模型的最佳目标函数值通常与下一个最佳值或之后的值没有显著差异。目标函数值的这种非唯一性导致了一个问题,因为最佳解决方案的参数通常与下一组最佳参数有很大的不同。因此,仅使用最佳模拟参数作为校准模型的唯一参数来解释流域过程或进行进一步的建模分析,可能会产生误导性的结果。此外,由于缺乏原始流域,使得流域尺度校准的任务变得越来越具有挑战性。一些研究人员根据比较测量值和最佳解决方案信号,提出了可接受性能标准的主观阈值,但这些标准往往无法实现。因此,为了获得满意的拟合效果,研究人员和从业者往往不得不牺牲工作背后的科学性。本文讨论了在水文建模中使用最佳拟合解的谬误。讨论了一种考虑模型输出不确定性的两因素统计方法来评估校准/验证的好坏。