Suppr超能文献

基于行政数据预测术后手术部位感染:随机森林算法。

Predicting postoperative surgical site infection with administrative data: a random forests algorithm.

机构信息

Clinical Epidemiology, Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, Ontario, K1Y 4E9, Canada.

School of Epidemiology and Public Health, University of Ottawa, 75 Laurier Ave E, Ottawa, Ontario, K1N 6N5, Canada.

出版信息

BMC Med Res Methodol. 2021 Aug 28;21(1):179. doi: 10.1186/s12874-021-01369-9.

Abstract

BACKGROUND

Since primary data collection can be time-consuming and expensive, surgical site infections (SSIs) could ideally be monitored using routinely collected administrative data. We derived and internally validated efficient algorithms to identify SSIs within 30 days after surgery with health administrative data, using Machine Learning algorithms.

METHODS

All patients enrolled in the National Surgical Quality Improvement Program from the Ottawa Hospital were linked to administrative datasets in Ontario, Canada. Machine Learning approaches, including a Random Forests algorithm and the high-performance logistic regression, were used to derive parsimonious models to predict SSI status. Finally, a risk score methodology was used to transform the final models into the risk score system. The SSI risk models were validated in the validation datasets.

RESULTS

Of 14,351 patients, 795 (5.5%) had an SSI. First, separate predictive models were built for three distinct administrative datasets. The final model, including hospitalization diagnostic, physician diagnostic and procedure codes, demonstrated excellent discrimination (C statistics, 0.91, 95% CI, 0.90-0.92) and calibration (Hosmer-Lemeshow χ statistics, 4.531, p = 0.402).

CONCLUSION

We demonstrated that health administrative data can be effectively used to identify SSIs. Machine learning algorithms have shown a high degree of accuracy in predicting postoperative SSIs and can integrate and utilize a large amount of administrative data. External validation of this model is required before it can be routinely used to identify SSIs.

摘要

背景

由于原始数据的收集可能既耗时又昂贵,因此理想情况下可以使用常规收集的行政数据来监测手术部位感染(SSI)。我们使用机器学习算法从健康行政数据中得出并内部验证了一种在手术后 30 天内识别 SSI 的有效算法。

方法

从渥太华医院的国家手术质量改进计划中招募的所有患者都与加拿大安大略省的行政数据集相关联。使用机器学习方法,包括随机森林算法和高性能逻辑回归,来得出简洁的模型,以预测 SSI 状态。最后,使用风险评分方法将最终模型转换为风险评分系统。在验证数据集中验证了 SSI 风险模型。

结果

在 14351 名患者中,有 795 名(5.5%)发生了 SSI。首先,为三个不同的行政数据集分别建立了预测模型。最终模型包括住院诊断、医生诊断和手术代码,具有出色的区分度(C 统计量,0.91,95%CI,0.90-0.92)和校准度(Hosmer-Lemeshow χ 统计量,4.531,p=0.402)。

结论

我们证明了健康行政数据可有效地用于识别 SSI。机器学习算法在预测术后 SSI 方面具有很高的准确性,可以整合和利用大量行政数据。在常规使用该模型识别 SSI 之前,需要进行外部验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4a5/8403439/f03ab66005f7/12874_2021_1369_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验