Suppr超能文献

医院环境和长期护理机构中感染控制与监测的创新技术:一项范围综述

Innovative Techniques for Infection Control and Surveillance in Hospital Settings and Long-Term Care Facilities: A Scoping Review.

作者信息

Arzilli Guglielmo, De Vita Erica, Pasquale Milena, Carloni Luca Marcello, Pellegrini Marzia, Di Giacomo Martina, Esposito Enrica, Porretta Andrea Davide, Rizzo Caterina

机构信息

Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.

University Hospital of Pisa, 56124, Pisa, Italy.

出版信息

Antibiotics (Basel). 2024 Jan 13;13(1):77. doi: 10.3390/antibiotics13010077.

Abstract

Healthcare-associated infections (HAIs) pose significant challenges in healthcare systems, with preventable surveillance playing a crucial role. Traditional surveillance, although effective, is resource-intensive. The development of new technologies, such as artificial intelligence (AI), can support traditional surveillance in analysing an increasing amount of health data or meeting patient needs. We conducted a scoping review, following the PRISMA-ScR guideline, searching for studies of new digital technologies applied to the surveillance, control, and prevention of HAIs in hospitals and LTCFs published from 2018 to 4 November 2023. The literature search yielded 1292 articles. After title/abstract screening and full-text screening, 43 articles were included. The mean study duration was 43.7 months. Surgical site infections (SSIs) were the most-investigated HAI and machine learning was the most-applied technology. Three main themes emerged from the thematic analysis: patient empowerment, workload reduction and cost reduction, and improved sensitivity and personalization. Comparative analysis between new technologies and traditional methods showed different population types, with machine learning methods examining larger populations for AI algorithm training. While digital tools show promise in HAI surveillance, especially for SSIs, challenges persist in resource distribution and interdisciplinary integration in healthcare settings, highlighting the need for ongoing development and implementation strategies.

摘要

医疗保健相关感染(HAIs)给医疗系统带来了重大挑战,其中可预防监测起着至关重要的作用。传统监测虽然有效,但资源密集。人工智能(AI)等新技术的发展可以在分析日益增多的健康数据或满足患者需求方面支持传统监测。我们按照PRISMA-ScR指南进行了一项范围综述,搜索2018年至2023年11月4日发表的关于应用于医院和长期护理机构中HAIs监测、控制和预防的新数字技术的研究。文献检索共获得1292篇文章。经过标题/摘要筛选和全文筛选,纳入了43篇文章。平均研究时长为43.7个月。手术部位感染(SSIs)是研究最多的HAI,机器学习是应用最广泛的技术。主题分析得出三个主要主题:患者赋权、工作量减少和成本降低,以及提高敏感性和个性化。新技术与传统方法的比较分析显示了不同的人群类型,机器学习方法为人工智能算法训练研究了更大的人群。虽然数字工具在HAI监测中显示出前景,尤其是对于SSIs,但在医疗环境中的资源分配和跨学科整合方面仍然存在挑战,这突出了持续开发和实施策略的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac48/10812752/0269ade4b717/antibiotics-13-00077-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验