Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161 Roma, Italy.
Quantitative Life Sciences Unit, The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste 34151, Italy.
Philos Trans A Math Phys Eng Sci. 2021 Oct 18;379(2208):20200400. doi: 10.1098/rsta.2020.0400. Epub 2021 Aug 30.
We present a deep learning-based object detection and object tracking algorithm to study droplet motion in dense microfluidic emulsions. The deep learning procedure is shown to correctly predict the droplets' shape and track their motion at competitive rates as compared to standard clustering algorithms, even in the presence of significant deformations. The deep learning technique and tool developed in this work could be used for the general study of the dynamics of biological agents in fluid systems, such as moving cells and self-propelled microorganisms in complex biological flows. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.
我们提出了一种基于深度学习的目标检测和目标跟踪算法,用于研究密集微流乳液中的液滴运动。与标准聚类算法相比,深度学习程序能够以有竞争力的速度正确预测液滴的形状并跟踪其运动,即使在存在明显变形的情况下也是如此。本文开发的深度学习技术和工具可用于研究流体系统中生物制剂的动力学,例如在复杂生物流中移动的细胞和自推进微生物。本文是主题为“流体动力学模拟的介观方法进展”的一部分。