Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), viale Regina Elena 295, 00161, Rome, Italy.
NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy.
Eur Phys J E Soft Matter. 2023 May 8;46(5):32. doi: 10.1140/epje/s10189-023-00290-x.
Tracking droplets in microfluidics is a challenging task. The difficulty arises in choosing a tool to analyze general microfluidic videos to infer physical quantities. The state-of-the-art object detector algorithm You Only Look Once (YOLO) and the object tracking algorithm Simple Online and Realtime Tracking with a Deep Association Metric (DeepSORT) are customizable for droplet identification and tracking. The customization includes training YOLO and DeepSORT networks to identify and track the objects of interest. We trained several YOLOv5 and YOLOv7 models and the DeepSORT network for droplet identification and tracking from microfluidic experimental videos. We compare the performance of the droplet tracking applications with YOLOv5 and YOLOv7 in terms of training time and time to analyze a given video across various hardware configurations. Despite the latest YOLOv7 being 10% faster, the real-time tracking is only achieved by lighter YOLO models on RTX 3070 Ti GPU machine due to additional significant droplet tracking costs arising from the DeepSORT algorithm. This work is a benchmark study for the YOLOv5 and YOLOv7 networks with DeepSORT in terms of the training time and inference time for a custom dataset of microfluidic droplets.
在微流控中跟踪液滴是一项具有挑战性的任务。在选择一种工具来分析一般的微流控视频以推断物理量时,会遇到困难。最先进的目标检测算法“你只看一次”(YOLO)和目标跟踪算法“简单在线实时跟踪与深度关联度量”(DeepSORT)可定制用于液滴识别和跟踪。定制包括训练 YOLO 和 DeepSORT 网络以识别和跟踪感兴趣的对象。我们从微流控实验视频中训练了几个 YOLOv5 和 YOLOv7 模型以及 DeepSORT 网络,用于液滴识别和跟踪。我们比较了 YOLOv5 和 YOLOv7 在不同硬件配置下分析给定视频的训练时间和时间的性能,用于液滴跟踪应用。尽管最新的 YOLOv7 快 10%,但由于 DeepSORT 算法带来的额外显著的液滴跟踪成本,只有在 RTX 3070 Ti GPU 机器上使用较轻的 YOLO 模型才能实现实时跟踪。这项工作是关于 YOLOv5 和 YOLOv7 网络与 DeepSORT 的基准研究,针对微流控液滴的自定义数据集的训练时间和推断时间。