Data-driven Intelligent Systems Laboratory, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China.
Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment, Ministry of Education, Anhui Polytechnic University, Wuhu 241000, Anhui Province, China.
Comput Intell Neurosci. 2021 Aug 19;2021:3576783. doi: 10.1155/2021/3576783. eCollection 2021.
In this article, a singularity-free terminal sliding mode (SFTSM) control scheme based on the radial basis function neural network (RBFNN) is proposed for the quadrotor unmanned aerial vehicles (QUAVs) under the presence of inertia uncertainties and external disturbances. Firstly, a singularity-free terminal sliding mode surface (SFTSMS) is constructed to achieve the finite-time convergence without any piecewise continuous function. Then, the adaptive finite-time control is designed with an auxiliary function to avoid the singularity in the error-related inverse matrix. Moreover, the RBFNN and extended state observer (ESO) are introduced to estimate the unknown disturbances, respectively, such that prior knowledge on system model uncertainties is not required for designing attitude controllers. Finally, the attitude and angular velocity errors are finite-time uniformly ultimately bounded (FTUUB), and numerical simulations illustrated the satisfactory performance of the designed control scheme.
本文针对存在惯性不确定性和外部干扰的四旋翼无人机 (QUAVs),提出了一种基于径向基函数神经网络 (RBFNN) 的无奇异终端滑模 (SFTSM) 控制方案。首先,构建了无奇异终端滑模面 (SFTSMS),以实现无需任何分段连续函数的有限时间收敛。然后,设计了自适应有限时间控制,采用辅助函数避免误差相关逆矩阵中的奇点。此外,引入 RBFNN 和扩展状态观测器 (ESO) 分别对未知干扰进行估计,因此在设计姿态控制器时不需要系统模型不确定性的先验知识。最后,姿态和角速度误差是有限时间一致最终有界 (FTUUB) 的,数值仿真表明所设计的控制方案具有令人满意的性能。