Suppr超能文献

基于经验小波变换和迁移学习的胸部CT图像COVID-19疾病识别

COVID-19 disease identification from chest CT images using empirical wavelet transformation and transfer learning.

作者信息

Gaur Pramod, Malaviya Vatsal, Gupta Abhay, Bhatia Gautam, Pachori Ram Bilas, Sharma Divyesh

机构信息

Department of Computer Science, BITS Pilani, Dubai campus, Dubai, United Arab Emirates.

Department of Computer Science & Engineering, The LNMIIT Jaipur, India.

出版信息

Biomed Signal Process Control. 2022 Jan;71:103076. doi: 10.1016/j.bspc.2021.103076. Epub 2021 Aug 25.

Abstract

In the current scenario, novel coronavirus disease (COVID-19) spread is increasing day-by-day. It is very important to control and cure this disease. Reverse transcription-polymerase chain reaction (RT-PCR), chest computerized tomography (CT) imaging options are available as a significantly useful and more truthful tool to classify COVID-19 within the epidemic region. Most of the hospitals have CT imaging machines. It will be fruitful to utilize the chest CT images for early diagnosis and classification of COVID-19 patients. This requires a radiology expert and a good amount of time to classify the chest CT-based COVID-19 images especially when the disease is spreading at a rapid rate. During this pandemic COVID-19, there is a need for an efficient automated way to check for infection. CT is one of the best ways to detect infection inpatients. This paper introduces a new method for preprocessing and classifying COVID-19 positive and negative from CT scan images. The method which is being proposed uses the concept of empirical wavelet transformation for preprocessing, selecting the best components of the red, green, and blue channels of the image are trained on the proposed network. With the proposed methodology, the classification accuracy of 85.5%, F1 score of 85.28%, and AUC of 96.6% are achieved.

摘要

在当前情况下,新型冠状病毒病(COVID-19)的传播日益加剧。控制和治愈这种疾病非常重要。逆转录聚合酶链反应(RT-PCR)、胸部计算机断层扫描(CT)成像选项是在疫情地区对COVID-19进行分类的显著有用且更可靠的工具。大多数医院都有CT成像设备。利用胸部CT图像对COVID-19患者进行早期诊断和分类将是富有成效的。这需要放射学专家且耗费大量时间来对基于胸部CT的COVID-19图像进行分类,尤其是在疾病快速传播时。在这次COVID-19大流行期间,需要一种高效的自动化方法来检查感染情况。CT是检测患者感染的最佳方法之一。本文介绍了一种从CT扫描图像中预处理和分类COVID-19阳性和阴性的新方法。所提出的方法使用经验小波变换的概念进行预处理,选择图像红、绿、蓝通道的最佳分量在所提出的网络上进行训练。通过所提出的方法,实现了85.5%的分类准确率、85.28%的F1分数和96.6%的AUC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce01/8384584/484610624790/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验