Department of Computer Science and Engineering, National Institute of Technology Patna, Patna, 800005, Bihar, India.
National Institute of Technology Patna, Patna, 800005, Bihar, India.
J Imaging Inform Med. 2024 Aug;37(4):1625-1641. doi: 10.1007/s10278-024-01005-0. Epub 2024 Mar 11.
Lung diseases represent a significant global health threat, impacting both well-being and mortality rates. Diagnostic procedures such as Computed Tomography (CT) scans and X-ray imaging play a pivotal role in identifying these conditions. X-rays, due to their easy accessibility and affordability, serve as a convenient and cost-effective option for diagnosing lung diseases. Our proposed method utilized the Contrast-Limited Adaptive Histogram Equalization (CLAHE) enhancement technique on X-ray images to highlight the key feature maps related to lung diseases using DenseNet201. We have augmented the existing Densenet201 model with a hybrid pooling and channel attention mechanism. The experimental results demonstrate the superiority of our model over well-known pre-trained models, such as VGG16, VGG19, InceptionV3, Xception, ResNet50, ResNet152, ResNet50V2, ResNet152V2, MobileNetV2, DenseNet121, DenseNet169, and DenseNet201. Our model achieves impressive accuracy, precision, recall, and F1-scores of 95.34%, 97%, 96%, and 96%, respectively. We also provide visual insights into our model's decision-making process using Gradient-weighted Class Activation Mapping (Grad-CAM) to identify normal, pneumothorax, and atelectasis cases. The experimental results of our model in terms of heatmap may help radiologists improve their diagnostic abilities and labelling processes.
肺部疾病是全球健康的重大威胁,对人们的健康和死亡率都有影响。计算机断层扫描(CT)和 X 射线成像等诊断程序在识别这些疾病方面起着至关重要的作用。由于 X 射线易于获取且价格实惠,因此是诊断肺部疾病的便捷且具有成本效益的选择。我们提出的方法在 X 射线图像上使用对比度受限的自适应直方图均衡(CLAHE)增强技术,利用 DenseNet201 突出与肺部疾病相关的关键特征图。我们在现有的 Densenet201 模型中加入了混合池化和通道注意力机制。实验结果表明,我们的模型优于 VGG16、VGG19、InceptionV3、Xception、ResNet50、ResNet152、ResNet50V2、ResNet152V2、MobileNetV2、DenseNet121、DenseNet169 和 DenseNet201 等知名预训练模型。我们的模型在准确性、精度、召回率和 F1 评分方面的表现分别为 95.34%、97%、96%和 96%。我们还使用 Gradient-weighted Class Activation Mapping(Grad-CAM)为模型的决策过程提供了直观的见解,以识别正常、气胸和肺不张病例。我们的模型在热图方面的实验结果可能有助于放射科医生提高诊断能力和标注过程。