Suppr超能文献

时间间隔计时中概念上合理的贝叶斯推理。

Conceptually plausible Bayesian inference in interval timing.

作者信息

Maaß Sarah C, de Jong Joost, van Maanen Leendert, van Rijn Hedderik

机构信息

Department of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712TS Groningen, The Netherlands.

Behavioral and Cognitive Neurosciences, University of Groningen, Grote Kruisstraat 2/1, 9712TS Groningen, The Netherlands.

出版信息

R Soc Open Sci. 2021 Aug 18;8(8):201844. doi: 10.1098/rsos.201844. eCollection 2021 Aug.

Abstract

In a world that is uncertain and noisy, perception makes use of optimization procedures that rely on the statistical properties of previous experiences. A well-known example of this phenomenon is the central tendency effect observed in many psychophysical modalities. For example, in interval timing tasks, previous experiences influence the current percept, pulling behavioural responses towards the mean. In Bayesian observer models, these previous experiences are typically modelled by unimodal statistical distributions, referred to as the prior. Here, we critically assess the validity of the assumptions underlying these models and propose a model that allows for more flexible, yet conceptually more plausible, modelling of empirical distributions. By representing previous experiences as a mixture of lognormal distributions, this model can be parametrized to mimic different unimodal distributions and thus extends previous instantiations of Bayesian observer models. We fit the mixture lognormal model to published interval timing data of healthy young adults and a clinical population of aged mild cognitive impairment patients and age-matched controls, and demonstrate that this model better explains behavioural data and provides new insights into the mechanisms that underlie the behaviour of a memory-affected clinical population.

摘要

在一个充满不确定性和噪音的世界里,感知利用依赖于先前经验统计特性的优化程序。这种现象的一个著名例子是在许多心理物理学模态中观察到的集中趋势效应。例如,在间隔计时任务中,先前的经验会影响当前的感知,将行为反应拉向平均值。在贝叶斯观察者模型中,这些先前的经验通常由单峰统计分布建模,称为先验。在这里,我们批判性地评估这些模型所基于假设的有效性,并提出一个模型,该模型允许对经验分布进行更灵活但在概念上更合理的建模。通过将先前的经验表示为对数正态分布的混合,该模型可以进行参数化以模拟不同的单峰分布,从而扩展了贝叶斯观察者模型的先前实例。我们将混合对数正态模型拟合到已发表的健康年轻成年人以及老年轻度认知障碍患者和年龄匹配对照组的间隔计时数据中,并证明该模型能更好地解释行为数据,并为受记忆影响的临床人群行为背后的机制提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f64/8371368/16859d711547/rsos201844f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验