Faramarzi Vahid, Ahmadi Vahid, Hwang Michael T, Snapp Peter
Department of Electrical and Computer Engineering, Tarbiat Modares University, 14115-194, Tehran, Iran.
Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi, 13120, Republic of Korea.
Biomed Opt Express. 2021 Jun 29;12(7):4544-4559. doi: 10.1364/BOE.428537. eCollection 2021 Jul 1.
We propose surface plasmon resonance biosensors based on crumpled graphene and molybdenum disulphide (MoS) flakes supported on stretchable polydimethylsiloxane (PDMS) or silicon substrates. Accumulation of specific biomarkers resulting in measurable shifts in the resonance wavelength of the plasmon modes of two-dimensional (2D) material structures, with crumpled structures demonstrating large refractive index shifts. Using theoretical calculations based on the semiclassical Drude model, combined with the finite element method, we demonstrate that the interaction between the surface plasmons of crumpled graphene/MoS layers and the surrounding analyte results in high sensitivity to biomarker driven refractive index shifts, up to 7499 nm/RIU for structures supported on silicon substrates. We can achieve a high figure of merit (FOM), defined as the ratio of the refractive index sensitivity to the full width at half maximum of the resonant peak, of approximately 62.5 RIU. Furthermore, the sensing properties of the device can be tuned by varying crumple period and aspect ratio through simple stretching and integrating material interlayers. By stacking multiple 2D materials in heterostructures supported on the PDMS layer, we produced hybrid plasmon resonances detuned from the PDMS absorbance region allowing higher sensitivity and FOM compared to pure crumpled graphene structures on the PDMS substrates. The high sensitivity and broad mechanical tunability of these crumpled 2D material biosensors considerable advantages over traditional refractive index sensors, providing a new platform for ultrasensitive biosensing.
我们提出了基于皱折石墨烯和二硫化钼(MoS)薄片的表面等离子体共振生物传感器,这些薄片支撑在可拉伸的聚二甲基硅氧烷(PDMS)或硅基片上。特定生物标志物的积累会导致二维(2D)材料结构的等离子体模式共振波长发生可测量的偏移,其中皱折结构表现出较大的折射率偏移。通过基于半经典德鲁德模型的理论计算,并结合有限元方法,我们证明了皱折石墨烯/MoS层的表面等离子体与周围分析物之间的相互作用对生物标志物驱动的折射率偏移具有高灵敏度,对于支撑在硅基片上的结构,灵敏度高达7499 nm/RIU。我们可以实现一个高优值(FOM),定义为折射率灵敏度与共振峰半高宽的比值,约为62.5 RIU。此外,通过简单拉伸和整合材料中间层来改变皱折周期和纵横比,可以调节器件的传感特性。通过在支撑在PDMS层上的异质结构中堆叠多种二维材料,我们产生了与PDMS吸收区域失谐的混合等离子体共振,与PDMS基片上的纯皱折石墨烯结构相比,具有更高的灵敏度和FOM。这些皱折二维材料生物传感器的高灵敏度和广泛的机械可调性相对于传统折射率传感器具有显著优势,为超灵敏生物传感提供了一个新平台。