State Key Lab for Mesoscopic Physics and School of Physics, Peking University, Beijing, 100871, China.
Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China.
Nat Commun. 2017 Dec 1;8(1):1889. doi: 10.1038/s41467-017-01662-6.
Plasmonic nanolasers are a new class of amplifiers that generate coherent light well below the diffraction barrier bringing fundamentally new capabilities to biochemical sensing, super-resolution imaging, and on-chip optical communication. However, a debate about whether metals can enhance the performance of lasers has persisted due to the unavoidable fact that metallic absorption intrinsically scales with field confinement. Here, we report plasmonic nanolasers with extremely low thresholds on the order of 10 kW cm at room temperature, which are comparable to those found in modern laser diodes. More importantly, we find unusual scaling laws allowing plasmonic lasers to be more compact and faster with lower threshold and power consumption than photonic lasers when the cavity size approaches or surpasses the diffraction limit. This clarifies the long-standing debate over the viability of metal confinement and feedback strategies in laser technology and identifies situations where plasmonic lasers can have clear practical advantage.
等离子体纳米激光器是一类新型的放大器,它可以在低于衍射极限的情况下产生相干光,从而为生化传感、超分辨率成像和片上光通信带来全新的功能。然而,由于金属吸收与场限制内在地成比例这一不可避免的事实,关于金属是否可以增强激光器性能的争论一直存在。在这里,我们报道了室温下阈值低至 10kW/cm 的等离子体纳米激光器,这与现代激光二极管相当。更重要的是,我们发现了不寻常的缩放规律,当腔尺寸接近或超过衍射极限时,与光子激光器相比,等离子体激光器在更紧凑、更快、更低阈值和更低功耗方面具有优势。这澄清了关于金属限制和反馈策略在激光技术中的可行性的长期争论,并确定了等离子体激光器在哪些情况下具有明显的实际优势。