文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

FRMC:一种用于 scRNA-seq 数据插补的快速而稳健的方法。

FRMC: a fast and robust method for the imputation of scRNA-seq data.

机构信息

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan, Hubei, China.

BGI PathoGenesis Pharmaceutical Technology, BGI-Shenzhen, Shenzhen 518083, China.

出版信息

RNA Biol. 2021 Oct 15;18(sup1):172-181. doi: 10.1080/15476286.2021.1960688. Epub 2021 Aug 30.


DOI:10.1080/15476286.2021.1960688
PMID:34459719
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8682979/
Abstract

The high-resolution feature of single-cell transcriptome sequencing technology allows researchers to observe cellular gene expression profiles at the single-cell level, offering numerous possibilities for subsequent biomedical investigation. However, the unavoidable technical impact of high missing values in the gene-cell expression matrices generated by insufficient RNA input severely hampers the accuracy of downstream analysis. To address this problem, it is essential to develop a more rapid and stable imputation method with greater accuracy, which should not only be able to recover the missing data, but also effectively facilitate the following biological mechanism analysis. The existing imputation methods all have their drawbacks and limitations, some require pre-assumed data distribution, some cannot distinguish between technical and biological zeros, and some have poor computational performance. In this paper, we presented a novel imputation software FRMC for single-cell RNA-Seq data, which innovates a fast and accurate singular value thresholding approximation method. The experiments demonstrated that FRMC can not only precisely distinguish 'true zeros' from dropout events and correctly impute missing values attributed to technical noises, but also effectively enhance intracellular and intergenic connections and achieve accurate clustering of cells in biological applications. In summary, FRMC can be a powerful tool for analysing single-cell data because it ensures biological significance, accuracy, and rapidity simultaneously. FRMC is implemented in Python and is freely accessible to non-commercial users on GitHub: https://github.com/HUST-DataMan/FRMC.

摘要

单细胞转录组测序技术的高分辨率特征使研究人员能够在单细胞水平观察细胞基因表达谱,为随后的生物医学研究提供了许多可能性。然而,由于 RNA 输入不足而产生的基因-细胞表达矩阵中不可避免的高缺失值的技术影响,严重阻碍了下游分析的准确性。为了解决这个问题,开发一种更快速、更稳定、更准确的插补方法至关重要,这种方法不仅要能够恢复缺失的数据,还要有效地促进后续的生物学机制分析。现有的插补方法都有其缺点和局限性,有些需要预先假设数据分布,有些不能区分技术零和生物学零,有些计算性能较差。在本文中,我们提出了一种新的用于单细胞 RNA-Seq 数据的插补软件 FRMC,该软件创新了一种快速准确的奇异值阈值逼近方法。实验表明,FRMC 不仅可以精确地区分“真正的零”和辍学事件,并正确地插补归因于技术噪声的缺失值,而且可以有效地增强细胞内和基因间的连接,并在生物应用中实现细胞的准确聚类。总之,FRMC 可以成为分析单细胞数据的有力工具,因为它同时确保了生物学意义、准确性和快速性。FRMC 是用 Python 实现的,非商业用户可以在 GitHub 上免费使用:https://github.com/HUST-DataMan/FRMC。

相似文献

[1]
FRMC: a fast and robust method for the imputation of scRNA-seq data.

RNA Biol. 2021-10-15

[2]
GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.

Brief Bioinform. 2022-9-20

[3]
scRMD: imputation for single cell RNA-seq data via robust matrix decomposition.

Bioinformatics. 2020-5-1

[4]
CDSImpute: An ensemble similarity imputation method for single-cell RNA sequence dropouts.

Comput Biol Med. 2022-7

[5]
TsImpute: an accurate two-step imputation method for single-cell RNA-seq data.

Bioinformatics. 2023-12-1

[6]
CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data.

Comput Biol Med. 2023-9

[7]
scIGANs: single-cell RNA-seq imputation using generative adversarial networks.

Nucleic Acids Res. 2020-9-4

[8]
ccImpute: an accurate and scalable consensus clustering based algorithm to impute dropout events in the single-cell RNA-seq data.

BMC Bioinformatics. 2022-7-22

[9]
Collaborative Structure-Preserved Missing Data Imputation for Single-Cell RNA-Seq Clustering.

IEEE/ACM Trans Comput Biol Bioinform. 2024

[10]
Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data.

Brief Bioinform. 2023-1-19

本文引用的文献

[1]
mbImpute: an accurate and robust imputation method for microbiome data.

Genome Biol. 2021-6-28

[2]
2DImpute: imputation in single-cell RNA-seq data from correlations in two dimensions.

Bioinformatics. 2020-6-1

[3]
bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.

Bioinformatics. 2020-2-15

[4]
McImpute: Matrix Completion Based Imputation for Single Cell RNA-seq Data.

Front Genet. 2019-1-29

[5]
VIPER: variability-preserving imputation for accurate gene expression recovery in single-cell RNA sequencing studies.

Genome Biol. 2018-11-12

[6]
A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade.

Cell. 2018-11-1

[7]
Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment.

Cell. 2018-6-28

[8]
Recovering Gene Interactions from Single-Cell Data Using Data Diffusion.

Cell. 2018-6-28

[9]
SAVER: gene expression recovery for single-cell RNA sequencing.

Nat Methods. 2018-6-25

[10]
Dirichlet Process Mixture Model for Correcting Technical Variation in Single-Cell Gene Expression Data.

JMLR Workshop Conf Proc. 2016

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索