Suppr超能文献

利用数据扩散从单细胞数据中恢复基因相互作用。

Recovering Gene Interactions from Single-Cell Data Using Data Diffusion.

机构信息

Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Applied Physics and Applied Math, Columbia University, New York, NY, USA.

出版信息

Cell. 2018 Jul 26;174(3):716-729.e27. doi: 10.1016/j.cell.2018.05.061. Epub 2018 Jun 28.

Abstract

Single-cell RNA sequencing technologies suffer from many sources of technical noise, including under-sampling of mRNA molecules, often termed "dropout," which can severely obscure important gene-gene relationships. To address this, we developed MAGIC (Markov affinity-based graph imputation of cells), a method that shares information across similar cells, via data diffusion, to denoise the cell count matrix and fill in missing transcripts. We validate MAGIC on several biological systems and find it effective at recovering gene-gene relationships and additional structures. Applied to the epithilial to mesenchymal transition, MAGIC reveals a phenotypic continuum, with the majority of cells residing in intermediate states that display stem-like signatures, and infers known and previously uncharacterized regulatory interactions, demonstrating that our approach can successfully uncover regulatory relations without perturbations.

摘要

单细胞 RNA 测序技术受到许多技术噪声源的影响,包括 mRNA 分子的抽样不足,通常称为“缺失”,这会严重掩盖重要的基因-基因关系。为了解决这个问题,我们开发了 MAGIC(基于马尔可夫亲和力的细胞图推断),这是一种通过数据扩散在相似细胞之间共享信息的方法,以对细胞计数矩阵进行去噪并填充缺失的转录本。我们在几个生物学系统上验证了 MAGIC,发现它有效地恢复了基因-基因关系和其他结构。应用于上皮到间充质转化,MAGIC 揭示了一个表型连续体,大多数细胞位于具有干细胞特征的中间状态,并推断出已知的和以前未表征的调控相互作用,表明我们的方法可以在没有干扰的情况下成功地揭示调控关系。

相似文献

1
Recovering Gene Interactions from Single-Cell Data Using Data Diffusion.
Cell. 2018 Jul 26;174(3):716-729.e27. doi: 10.1016/j.cell.2018.05.061. Epub 2018 Jun 28.
2
G2S3: A gene graph-based imputation method for single-cell RNA sequencing data.
PLoS Comput Biol. 2021 May 18;17(5):e1009029. doi: 10.1371/journal.pcbi.1009029. eCollection 2021 May.
3
LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering.
Bioinformatics. 2017 Mar 1;33(5):764-766. doi: 10.1093/bioinformatics/btw729.
5
Inference of Gene Co-expression Networks from Single-Cell RNA-Sequencing Data.
Methods Mol Biol. 2019;1935:141-153. doi: 10.1007/978-1-4939-9057-3_10.
6
Analysis of microRNA Regulation in Single Cells.
Methods Mol Biol. 2021;2243:339-354. doi: 10.1007/978-1-0716-1103-6_18.
8
noisyR: enhancing biological signal in sequencing datasets by characterizing random technical noise.
Nucleic Acids Res. 2021 Aug 20;49(14):e83. doi: 10.1093/nar/gkab433.
9
Binomial models uncover biological variation during feature selection of droplet-based single-cell RNA sequencing.
PLoS Comput Biol. 2024 Sep 6;20(9):e1012386. doi: 10.1371/journal.pcbi.1012386. eCollection 2024 Sep.
10
Leveraging gene correlations in single cell transcriptomic data.
BMC Bioinformatics. 2024 Sep 18;25(1):305. doi: 10.1186/s12859-024-05926-z.

引用本文的文献

3
mbSparse: an autoencoder-based imputation method to address sparsity in microbiome data.
Gut Microbes. 2025 Dec;17(1):2552347. doi: 10.1080/19490976.2025.2552347. Epub 2025 Sep 1.
4
Spatial Multiplexing and Omics.
Nat Rev Methods Primers. 2024;4(1). doi: 10.1038/s43586-024-00330-6. Epub 2024 Aug 1.
5
MERGE: Multi-faceted Hierarchical Graph-based GNN for Gene Expression Prediction from Whole Slide Histopathology Images.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2025 Jun;2025:15611-15620. doi: 10.1109/cvpr52734.2025.01455. Epub 2025 Aug 13.
6
Thymic epithelial cells amplify epigenetic noise to promote immune tolerance.
Nature. 2025 Aug 20. doi: 10.1038/s41586-025-09424-x.
7
COUP-TFII-mediated reprogramming of the vascular endothelium counteracts tumor immune evasion.
Nat Commun. 2025 Aug 12;16(1):7457. doi: 10.1038/s41467-025-62399-1.
8
Thor: a platform for cell-level investigation of spatial transcriptomics and histology.
Nat Commun. 2025 Aug 5;16(1):7178. doi: 10.1038/s41467-025-62593-1.
9
Dynamical systems theory as an organizing principle for single-cell biology.
NPJ Syst Biol Appl. 2025 Aug 1;11(1):85. doi: 10.1038/s41540-025-00565-3.

本文引用的文献

1
2
Single-cell barcoding and sequencing using droplet microfluidics.
Nat Protoc. 2017 Jan;12(1):44-73. doi: 10.1038/nprot.2016.154. Epub 2016 Dec 8.
3
Diffusion pseudotime robustly reconstructs lineage branching.
Nat Methods. 2016 Oct;13(10):845-8. doi: 10.1038/nmeth.3971. Epub 2016 Aug 29.
4
Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics.
Cell. 2016 Aug 25;166(5):1308-1323.e30. doi: 10.1016/j.cell.2016.07.054.
5
EMT: 2016.
Cell. 2016 Jun 30;166(1):21-45. doi: 10.1016/j.cell.2016.06.028.
6
Wishbone identifies bifurcating developmental trajectories from single-cell data.
Nat Biotechnol. 2016 Jun;34(6):637-45. doi: 10.1038/nbt.3569. Epub 2016 May 2.
7
TGF-β Tumor Suppression through a Lethal EMT.
Cell. 2016 Feb 25;164(5):1015-30. doi: 10.1016/j.cell.2016.01.009. Epub 2016 Feb 18.
8
Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors.
Cell. 2015 Dec 17;163(7):1663-77. doi: 10.1016/j.cell.2015.11.013. Epub 2015 Nov 25.
9
Distinct EMT programs control normal mammary stem cells and tumour-initiating cells.
Nature. 2015 Sep 10;525(7568):256-60. doi: 10.1038/nature14897. Epub 2015 Sep 2.
10
Geometry of the Gene Expression Space of Individual Cells.
PLoS Comput Biol. 2015 Jul 10;11(7):e1004224. doi: 10.1371/journal.pcbi.1004224. eCollection 2015 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验