Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA.
EBioMedicine. 2021 Sep;71:103559. doi: 10.1016/j.ebiom.2021.103559. Epub 2021 Aug 27.
The most common B-cell cancers, chronic lymphocytic leukemia/lymphoma (CLL), follicular and diffuse large B-cell (FL, DLBCL) lymphomas, have distinct clinical courses, yet overlapping "cell-of-origin". Dynamic changes to the epigenome are essential regulators of B-cell differentiation. Therefore, we reasoned that these distinct cancers may be driven by shared mechanisms of disruption in transcriptional circuitry.
We compared purified malignant B-cells from 52 patients with normal B-cell subsets (germinal center centrocytes and centroblasts, naïve and memory B-cells) from 36 donor tonsils using >325 high-resolution molecular profiling assays for histone modifications, open chromatin (ChIP-, FAIRE-seq), transcriptome (RNA-seq), transcription factor (TF) binding, and genome copy number (microarrays).
From the resulting data, we identified gains in active chromatin in enhancers/super-enhancers that likely promote unchecked B-cell receptor signaling, including one we validated near the immunoglobulin superfamily receptors FCMR and PIGR. More striking and pervasive was the profound loss of key B-cell identity TFs, tumor suppressors and their super-enhancers, including EBF1, OCT2(POU2F2), and RUNX3. Using a novel approach to identify transcriptional feedback, we showed that these core transcriptional circuitries are self-regulating. Their selective gain and loss form a complex, iterative, and interactive process that likely curbs B-cell maturation and spurs proliferation.
Our study is the first to map the transcriptional circuitry of the most common blood cancers. We demonstrate that a critical subset of B-cell TFs and their cognate enhancers form self-regulatory transcriptional feedback loops whose disruption is a shared mechanism underlying these diverse subtypes of B-cell lymphoma.
National Institute of Health, Siteman Cancer Center, Barnes-Jewish Hospital Foundation, Doris Duke Foundation.
最常见的 B 细胞癌症,慢性淋巴细胞白血病/淋巴瘤(CLL)、滤泡性和弥漫性大 B 细胞(FL、DLBCL)淋巴瘤,具有不同的临床病程,但存在重叠的“细胞起源”。表观基因组的动态变化是 B 细胞分化的重要调节因子。因此,我们推断这些不同的癌症可能是由转录电路中断的共同机制驱动的。
我们比较了 52 例患者的纯化恶性 B 细胞和 36 例供体扁桃体的正常 B 细胞亚群(生发中心中心细胞和中心母细胞、幼稚和记忆 B 细胞),使用超过 325 种高分辨率分子分析检测组蛋白修饰、开放染色质(ChIP-、FAIRE-seq)、转录组(RNA-seq)、转录因子(TF)结合和基因组拷贝数(微阵列)。
从所得数据中,我们确定了增强子/超级增强子中活性染色质的增加,这可能促进不受控制的 B 细胞受体信号传导,包括我们在免疫球蛋白超家族受体 FCMR 和 PIGR 附近验证的一个。更引人注目和普遍的是关键 B 细胞身份 TF、肿瘤抑制因子及其超级增强子的深刻丧失,包括 EBF1、OCT2(POU2F2)和 RUNX3。使用一种新的方法来识别转录反馈,我们表明这些核心转录电路是自我调节的。它们的选择性获得和丧失形成了一个复杂的、迭代的和交互的过程,可能抑制 B 细胞成熟并刺激增殖。
我们的研究首次绘制了最常见血液癌症的转录电路。我们证明,关键的 B 细胞 TF 子集及其同源增强子形成自我调节的转录反馈回路,其破坏是这些不同类型的 B 细胞淋巴瘤的共同机制。
美国国立卫生研究院、西特曼癌症中心、巴恩斯-犹太医院基金会、多丽丝·杜克基金会。