Suppr超能文献

基于改进的混合协同过滤的 miRNA 疾病关联预测高效框架。

Efficient framework for predicting MiRNA-disease associations based on improved hybrid collaborative filtering.

机构信息

Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, 221116, China.

School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 221116, China.

出版信息

BMC Med Inform Decis Mak. 2021 Aug 30;21(Suppl 1):254. doi: 10.1186/s12911-021-01616-5.

Abstract

BACKGROUND

Accumulating studies indicates that microRNAs (miRNAs) play vital roles in the process of development and progression of many human complex diseases. However, traditional biochemical experimental methods for identifying disease-related miRNAs cost large amount of time, manpower, material and financial resources.

METHODS

In this study, we developed a framework named hybrid collaborative filtering for miRNA-disease association prediction (HCFMDA) by integrating heterogeneous data, e.g., miRNA functional similarity, disease semantic similarity, known miRNA-disease association networks, and Gaussian kernel similarity of miRNAs and diseases. To capture the intrinsic interaction patterns embedded in the sparse association matrix, we prioritized the predictive score by fusing three types of information: similar disease associations, similar miRNA associations, and similar disease-miRNA associations. Meanwhile, singular value decomposition was adopted to reduce the impact of noise and accelerate predictive speed.

RESULTS

We then validated HCFMDA with leave-one-out cross-validation (LOOCV) and two types of case studies. In the LOOCV, we achieved 0.8379 of AUC (area under the curve). To evaluate the performance of HCFMDA on real diseases, we further implemented the first type of case validation over three important human diseases: Colon Neoplasms, Esophageal Neoplasms and Prostate Neoplasms. As a result, 44, 46 and 44 out of the top 50 predicted disease-related miRNAs were confirmed by experimental evidence. Moreover, the second type of case validation on Breast Neoplasms indicates that HCFMDA could also be applied to predict potential miRNAs towards those diseases without any known associated miRNA.

CONCLUSIONS

The satisfactory prediction performance demonstrates that our model could serve as a reliable tool to guide the following research for identifying candidate miRNAs associated with human diseases.

摘要

背景

越来越多的研究表明,微小 RNA(miRNA)在许多人类复杂疾病的发展和进展过程中起着至关重要的作用。然而,传统的用于鉴定疾病相关 miRNA 的生化实验方法需要大量的时间、人力、物力和财力。

方法

在这项研究中,我们通过整合 miRNA 功能相似性、疾病语义相似性、已知的 miRNA-疾病关联网络以及 miRNA 和疾病的高斯核相似性等异构数据,开发了一种名为混合协作过滤 miRNA-疾病关联预测(HCFMDA)的框架。为了捕捉嵌入在稀疏关联矩阵中的内在交互模式,我们通过融合三种类型的信息来优先考虑预测得分:相似的疾病关联、相似的 miRNA 关联以及相似的疾病-miRNA 关联。同时,采用奇异值分解来减少噪声的影响并加速预测速度。

结果

我们随后通过留一法交叉验证(LOOCV)和两种类型的案例研究来验证 HCFMDA。在 LOOCV 中,我们实现了 0.8379 的 AUC(曲线下面积)。为了评估 HCFMDA 在真实疾病上的性能,我们进一步在三种重要的人类疾病(结肠肿瘤、食管肿瘤和前列腺肿瘤)上进行了第一种类型的案例验证。结果,在 top50 预测的疾病相关 miRNA 中有 44、46 和 44 个得到了实验证据的证实。此外,在乳腺癌上的第二种类型的案例验证表明,HCFMDA 也可以应用于预测那些没有已知相关 miRNA 的潜在疾病的 miRNA。

结论

令人满意的预测性能表明,我们的模型可以作为一种可靠的工具,指导后续研究以鉴定与人类疾病相关的候选 miRNA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0f5/8406577/a7d50503216b/12911_2021_1616_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验