Suppr超能文献

用于差分传感应用的“印迹-报告”动态组合文库的开发。

Development of "Imprint-and-Report" Dynamic Combinatorial Libraries for Differential Sensing Applications.

机构信息

Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.

出版信息

J Am Chem Soc. 2021 Sep 15;143(36):14845-14854. doi: 10.1021/jacs.1c07068. Epub 2021 Aug 31.

Abstract

Sensor arrays using synthetic receptors have found great utility in analyte detection, resulting from their ability to distinguish analytes based on differential signals via indicator displacement. However, synthesis and characterization of receptors for an array remain a bottleneck in the field. Receptor discovery has been streamlined using dynamic combinatorial libraries (DCLs), but the resulting receptors have primarily been utilized in isolation rather than as part of the entire library, with only a few examples that make use of the complexity of a library of receptors. Herein, we demonstrate a unique sensor array approach using "imprint-and-report" DCLs that obviates the need for receptor synthesis and isolation. This strategy leverages information stored in DCLs in the form of differential library speciation to provide a high-throughput method for both developing a sensor array and analyzing data for analyte differentiation. First, each DCL is templated with analyte to give an imprinted library, followed by in situ fluorescent indicator displacement analysis. We further demonstrate that the reverse strategy, imprinting with the fluorescent reporter followed by displacement with each analyte, provides a more sensitive method for differentiating analytes. We describe the development of this differential sensing system using the methylated Arg and Lys post-translational modifications (PTMs). Altogether, 19 combinations of 3-5 DCL data sets that discriminate all 7 PTMs were identified. Thus, a comparable sensor array workflow results in a larger payoff due to the immense information stored within multiple noncovalent networks.

摘要

基于指示剂置换的差分信号,合成受体的传感器阵列在分析物检测中具有广泛的应用,这归因于其能够区分分析物的能力。然而,在该领域,合成和表征用于阵列的受体仍然是一个瓶颈。通过动态组合化学库(DCL)简化了受体的发现,但是所得到的受体主要是孤立使用,而不是作为整个文库的一部分,只有少数例子利用了受体文库的复杂性。在此,我们展示了一种使用“印迹和报告”DCL 的独特传感器阵列方法,该方法避免了受体合成和分离的需要。该策略利用 DCL 中以差分文库特化形式存储的信息,为开发传感器阵列和分析分析物区分的数据提供了一种高通量方法。首先,每个 DCL 都与分析物模板化以得到印迹文库,然后进行原位荧光指示剂置换分析。我们进一步证明,用荧光报告分子印迹,然后用每种分析物置换的反向策略,为区分分析物提供了一种更灵敏的方法。我们描述了使用甲基化的 Arg 和 Lys 翻译后修饰(PTM)来开发这种差分传感系统。总之,通过 3-5 个 DCL 数据集的 19 种组合,确定了可以区分所有 7 种 PTM 的数据集。因此,由于多个非共价网络中存储了大量信息,类似的传感器阵列工作流程会带来更大的收益。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验