Suppr超能文献

使用计算流体力学、神经网络和粒子图像测速实验对轴向螺旋叶片血泵的分流叶片进行多参数和多目标优化。

Multiple parameters and target optimization of splitter blades for axial spiral blade blood pump using computational fluid mechanics, neural networks, and particle image velocimetry experiment.

机构信息

College of Energy and Power Engineering, 12418Changsha University of Science and Technology, China.

College of Mechanical and Electrical Engineering, 12570Central South University, China.

出版信息

Sci Prog. 2021 Jul-Sep;104(3):368504211039363. doi: 10.1177/00368504211039363.

Abstract

The blood pump is an implantable device with strict performance requirements. Any effective structural improvement will help to improve the treatment of patients. However, the research of blood pump structure improvement is a complex optimization problem with multiple parameters and objectives. This study takes the splitter blade as the object of structural improvement. Computational fluid mechanics and neural networks are combined in research and optimization. And hydraulic experiments and micro particle image velocimetry technology were used. In the optimization study, the number of blades, axial length and circumferential offset are optimization parameters, and hydraulic performance and hemolytic prediction index are optimization targets. The study analyzes the influence of each parameter on performance and completes the optimization of the parameters. In the results, the optimal parameters of number of blades, axial length ratio, and circumferential offset are 2.6° and 0.41°, respectively. Under optimized parameters, hydraulic performance can be significantly improved. And the results of hemolysis prediction and micro particle image velocimetry experiments reflect that there is no increase in the risk of hemolytic damage. The results of this study provide a method and ideas for improving the structure of the axial spiral blade blood pump. The established optimization method can be effectively applied to the design and research of axial spiral blade blood pumps with complex, high precision, and multiple parameters and targets.

摘要

血泵是一种具有严格性能要求的植入式装置。任何有效的结构改进都有助于改善患者的治疗效果。然而,血泵结构改进的研究是一个具有多个参数和目标的复杂优化问题。本研究以分流叶片为结构改进对象,将计算流体力学与神经网络相结合进行研究与优化,并采用水力实验和微粒子图像测速技术。在优化研究中,叶片数、轴向长度和周向偏移量为优化参数,水力性能和溶血预测指标为优化目标。研究分析了各参数对性能的影响,并完成了参数的优化。研究结果表明,叶片数、轴向长度比和周向偏移量的最佳参数分别为 2.6°和 0.41°。在优化参数下,水力性能可显著提高。溶血预测和微粒子图像测速实验结果表明,溶血损伤风险没有增加。本研究为轴向螺旋叶片血泵的结构改进提供了一种方法和思路。所建立的优化方法可以有效地应用于具有复杂、高精度和多参数、多目标的轴向螺旋叶片血泵的设计和研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ce/10461372/2f2b9be36367/10.1177_00368504211039363-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验