Suppr超能文献

使用美国食品药品监督管理局基准喷嘴模型进行的流动诱导溶血多实验室研究。

Multilaboratory study of flow-induced hemolysis using the FDA benchmark nozzle model.

作者信息

Herbertson Luke H, Olia Salim E, Daly Amanda, Noatch Christopher P, Smith William A, Kameneva Marina V, Malinauskas Richard A

机构信息

Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA.

出版信息

Artif Organs. 2015 Mar;39(3):237-48. doi: 10.1111/aor.12368. Epub 2014 Sep 2.

Abstract

Multilaboratory in vitro blood damage testing was performed on a simple nozzle model to determine how different flow parameters and blood properties affect device-induced hemolysis and to generate data for comparison with computational fluid dynamics-based predictions of blood damage as part of an FDA initiative for assessing medical device safety. Three independent laboratories evaluated hemolysis as a function of nozzle entrance geometry, flow rate, and blood properties. Bovine blood anticoagulated with acid citrate dextrose solution (2-80 h post-draw) was recirculated through nozzle-containing and paired nozzle-free control loops for 2 h. Controlled parameters included hematocrit (36 ± 1.5%), temperature (25 °C), blood volume, flow rate, and pressure. Three nozzle test conditions were evaluated (n = 26-36 trials each): (i) sudden contraction at the entrance with a blood flow rate of 5 L/min, (ii) gradual cone at the entrance with a 6-L/min blood flow rate, and (iii) sudden-contraction inlet at 6 L/min. The blood damage caused only by the nozzle model was calculated by subtracting the hemolysis generated by the paired control loop test. Despite high intralaboratory variability, significant differences among the three test conditions were observed, with the sharp nozzle entrance causing the most hemolysis. Modified index of hemolysis (MIHnozzle ) values were 0.292 ± 0.249, 0.021 ± 0.128, and 1.239 ± 0.667 for conditions i-iii, respectively. Porcine blood generated hemolysis results similar to those obtained with bovine blood. Although the interlaboratory hemolysis results are only applicable for the specific blood parameters and nozzle model used here, these empirical data may help to advance computational fluid dynamics models for predicting blood damage.

摘要

在一个简单的喷嘴模型上进行了多实验室体外血液损伤测试,以确定不同的流动参数和血液特性如何影响设备引起的溶血,并生成数据,以便与基于计算流体动力学的血液损伤预测结果进行比较,这是美国食品药品监督管理局(FDA)评估医疗器械安全性倡议的一部分。三个独立实验室评估了溶血与喷嘴入口几何形状、流速和血液特性之间的关系。用酸性枸橼酸盐葡萄糖溶液抗凝的牛血(采血后2 - 80小时)通过含喷嘴和配对无喷嘴的对照回路循环2小时。控制参数包括血细胞比容(36±1.5%)、温度(25℃)、血量、流速和压力。评估了三种喷嘴测试条件(每种条件进行26 - 36次试验):(i)入口处突然收缩,血流速度为5升/分钟;(ii)入口处为渐缩圆锥,血流速度为6升/分钟;(iii)入口处突然收缩,流速为6升/分钟。仅由喷嘴模型引起的血液损伤通过减去配对对照回路测试产生的溶血来计算。尽管实验室内部存在很大差异,但在三种测试条件之间观察到了显著差异,尖锐的喷嘴入口导致的溶血最多。条件(i) - (iii)的修正溶血指数(MIHnozzle)值分别为0.292±0.249、0.021±0.128和1.239±0.667。猪血产生的溶血结果与牛血相似。虽然实验室间的溶血结果仅适用于此处使用的特定血液参数和喷嘴模型,但这些经验数据可能有助于推进用于预测血液损伤的计算流体动力学模型。

相似文献

1
Multilaboratory study of flow-induced hemolysis using the FDA benchmark nozzle model.
Artif Organs. 2015 Mar;39(3):237-48. doi: 10.1111/aor.12368. Epub 2014 Sep 2.
3
Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
Cardiovasc Eng Technol. 2018 Dec;9(4):623-640. doi: 10.1007/s13239-018-00378-y. Epub 2018 Oct 5.
4
Examining the universality of the hemolysis power law model from simulations of the FDA nozzle using calibrated model coefficients.
Biomech Model Mechanobiol. 2023 Apr;22(2):433-451. doi: 10.1007/s10237-022-01655-5. Epub 2022 Nov 23.
5
Large-Eddy Simulations of Flow in the FDA Benchmark Nozzle Geometry to Predict Hemolysis.
Cardiovasc Eng Technol. 2020 Jun;11(3):254-267. doi: 10.1007/s13239-020-00461-3. Epub 2020 Apr 15.
6
Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry.
Cardiovasc Eng Technol. 2016 Sep;7(3):191-209. doi: 10.1007/s13239-016-0270-1. Epub 2016 Jun 27.
7
FDA Benchmark Medical Device Flow Models for CFD Validation.
ASAIO J. 2017 Mar/Apr;63(2):150-160. doi: 10.1097/MAT.0000000000000499.
8
Results of the Interlaboratory Computational Fluid Dynamics Study of the FDA Benchmark Blood Pump.
Ann Biomed Eng. 2023 Jan;51(1):253-269. doi: 10.1007/s10439-022-03105-w. Epub 2022 Nov 18.
9
Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump.
Artif Organs. 2020 Jul;44(7):E263-E276. doi: 10.1111/aor.13643. Epub 2020 Feb 16.

引用本文的文献

3
Fluid Dynamic and in Vitro Blood Study to Understand Catheter-Related Thrombosis.
Cardiovasc Eng Technol. 2025 Feb;16(1):116-137. doi: 10.1007/s13239-024-00761-y. Epub 2024 Dec 2.
6
The Evolution of Durable, Implantable Axial-Flow Rotary Blood Pumps.
Tex Heart Inst J. 2023 Mar 1;50(2). doi: 10.14503/THIJ-22-7908.
8
Flow simulation-based particle swarm optimization for developing improved hemolysis models.
Biomech Model Mechanobiol. 2023 Apr;22(2):401-416. doi: 10.1007/s10237-022-01653-7. Epub 2022 Nov 28.
9
Examining the universality of the hemolysis power law model from simulations of the FDA nozzle using calibrated model coefficients.
Biomech Model Mechanobiol. 2023 Apr;22(2):433-451. doi: 10.1007/s10237-022-01655-5. Epub 2022 Nov 23.

本文引用的文献

1
Study of flow-induced hemolysis using novel Couette-type blood-shearing devices.
Artif Organs. 2011 Dec;35(12):1180-6. doi: 10.1111/j.1525-1594.2011.01243.x. Epub 2011 Aug 2.
3
The use of computational fluid dynamics in the development of ventricular assist devices.
Med Eng Phys. 2011 Apr;33(3):263-80. doi: 10.1016/j.medengphy.2010.10.014. Epub 2010 Nov 13.
4
The use of the mechanical fragility test in evaluating sublethal RBC injury during storage.
Vox Sang. 2010 Nov;99(4):325-31. doi: 10.1111/j.1423-0410.2010.01365.x.
5
Parametric study of blade tip clearance, flow rate, and impeller speed on blood damage in rotary blood pump.
Artif Organs. 2009 Jun;33(6):468-74. doi: 10.1111/j.1525-1594.2009.00754.x.
6
Fluid mechanics of artificial heart valves.
Clin Exp Pharmacol Physiol. 2009 Feb;36(2):225-37. doi: 10.1111/j.1440-1681.2008.05099.x.
7
Numerical modeling of blood damage: current status, challenges and future prospects.
Expert Rev Med Devices. 2006 Sep;3(5):527-31. doi: 10.1586/17434440.3.5.527.
8
An update on solutions for red cell storage.
Vox Sang. 2006 Jul;91(1):13-9. doi: 10.1111/j.1423-0410.2006.00778.x.
9
Flow in prosthetic heart valves: state-of-the-art and future directions.
Ann Biomed Eng. 2005 Dec;33(12):1689-94. doi: 10.1007/s10439-005-8759-z.
10
Research approaches for studying flow-induced thromboembolic complications in blood recirculating devices.
Expert Rev Med Devices. 2004 Sep;1(1):65-80. doi: 10.1586/17434440.1.1.65.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验