Suppr超能文献

Radius selection using kernel density estimation for the computation of nonlinear measures.

作者信息

Medrano Johan, Kheddar Abderrahmane, Lesne Annick, Ramdani Sofiane

机构信息

LIRMM, CNRS UMR 5506, University of Montpellier, F-34095 Montpellier, France.

Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75252 Paris, France.

出版信息

Chaos. 2021 Aug;31(8):083131. doi: 10.1063/5.0055797.

Abstract

When nonlinear measures are estimated from sampled temporal signals with finite-length, a radius parameter must be carefully selected to avoid a poor estimation. These measures are generally derived from the correlation integral, which quantifies the probability of finding neighbors, i.e., pair of points spaced by less than the radius parameter. While each nonlinear measure comes with several specific empirical rules to select a radius value, we provide a systematic selection method. We show that the optimal radius for nonlinear measures can be approximated by the optimal bandwidth of a Kernel Density Estimator (KDE) related to the correlation sum. The KDE framework provides non-parametric tools to approximate a density function from finite samples (e.g., histograms) and optimal methods to select a smoothing parameter, the bandwidth (e.g., bin width in histograms). We use results from KDE to derive a closed-form expression for the optimal radius. The latter is used to compute the correlation dimension and to construct recurrence plots yielding an estimate of Kolmogorov-Sinai entropy. We assess our method through numerical experiments on signals generated by nonlinear systems and experimental electroencephalographic time series.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验