García-Fernández Rosa M, Palacios-González Federico
Department of Quantitative Methods for Economics and Business, Faculty of Economics and Business Sciences, University of Granada, Granada, Spain.
J Appl Stat. 2023 Nov 7;51(11):2232-2257. doi: 10.1080/02664763.2023.2277125. eCollection 2024.
This paper introduces an approach to select the bandwidth or smoothing parameter in multiresolution (MR) density estimation and nonparametric density estimation. It is based on the evolution of the second, third and fourth central moments and the shape of the estimated densities for different bandwidths and resolution levels. The proposed method has been applied to density estimation by means of multiresolution densities as well as kernel density estimation (MRDE and KDE respectively). The results of the simulations and the empirical application demonstrate that the level of resolution resulting from the moments method performs better with multimodal densities than the Bayesian Information Criterion (BIC) for multiresolution densities estimation and the plug-in for kernel densities estimation.
本文介绍了一种在多分辨率(MR)密度估计和非参数密度估计中选择带宽或平滑参数的方法。它基于二阶、三阶和四阶中心矩的演变以及不同带宽和分辨率水平下估计密度的形状。所提出的方法已应用于通过多分辨率密度以及核密度估计(分别为MRDE和KDE)进行密度估计。模拟结果和实证应用表明,对于多模态密度,矩方法产生的分辨率水平在多分辨率密度估计中比贝叶斯信息准则(BIC)表现更好,在核密度估计中比插件法表现更好。