Suppr超能文献

伪麻黄碱及其衍生物通过阻止病毒入侵和抗炎作用拮抗野生型和突变型严重急性呼吸综合征冠状病毒 2 型病毒。

Pseudoephedrine and its derivatives antagonize wild and mutated severe acute respiratory syndrome-CoV-2 viruses through blocking virus invasion and antiinflammatory effect.

机构信息

The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

出版信息

Phytother Res. 2021 Oct;35(10):5847-5860. doi: 10.1002/ptr.7245. Epub 2021 Sep 1.

Abstract

The coronavirus disease 2019 has infected over 150 million people worldwide and led to over 3 million deaths. Severe acute respiratory syndrome (SARS)-CoV-2 lineages B.1.1.7, B.1.617, B.1.351, and P.1 were reported to have higher infection rates than that of wild one. These mutations were noticed to happen in the receptor-binding domain of spike protein (S-RBD), especially mutations N501Y, E484Q, E484K, K417N, K417T, and L452R. Currently, there is still no specific medicine against the virus; moreover, cytokine storm is also a dangerous factor for severe infected patients. In this study, potential S-RBD-targeted active monomers from traditional Chinese medicine Ephedra sinica Stapf (ephedra) were discovered by virtual screening. NanoBiT assay was performed to confirm blocking activities of the screened compounds against the interaction between SARS-CoV-2 S-RBD and angiotensin-converting enzyme 2 (ACE2). We further analyzed the blocking effect of the active compounds on the interactions of mutated S-RBD and ACE2 by computational studies. Moreover, antiinflammatory activities were evaluated using qRT-PCR, enzyme-linked immune sorbent assay, and Western blot analysis. As a result, pseudoephedrine (MHJ-17) and its derivative (MHJ-11) were found as efficient inhibitors disrupting the interactions between ACE2 and both wild and mutated S-RBDs. In addition, they also have antiinflammatory activities, which can be potential drug candidates or lead compounds for further study.

摘要

2019 年冠状病毒病已在全球感染超过 1.5 亿人,并导致超过 300 万人死亡。有报道称,严重急性呼吸系统综合征冠状病毒 2 (SARS-CoV-2)谱系 B.1.1.7、B.1.617、B.1.351 和 P.1 的感染率高于野生型。这些突变被发现在刺突蛋白(S-RBD)的受体结合域中,特别是突变 N501Y、E484Q、E484K、K417N、K417T 和 L452R。目前,仍然没有针对该病毒的特效药物;此外,细胞因子风暴也是重症感染患者的一个危险因素。在这项研究中,通过虚拟筛选从传统中药麻黄(ephedra)中发现了潜在的 S-RBD 靶向活性单体。通过 NanoBiT 测定法来确认筛选化合物对 SARS-CoV-2 S-RBD 和血管紧张素转化酶 2(ACE2)之间相互作用的阻断活性。我们进一步通过计算研究分析了活性化合物对突变 S-RBD 和 ACE2 相互作用的阻断作用。此外,通过 qRT-PCR、酶联免疫吸附测定和 Western blot 分析评估了抗炎活性。结果表明,伪麻黄碱(MHJ-17)及其衍生物(MHJ-11)是有效的抑制剂,可以破坏 ACE2 与野生型和突变型 S-RBD 之间的相互作用。此外,它们还具有抗炎活性,可作为潜在的候选药物或先导化合物进一步研究。

相似文献

3
Potential inhibitor for blocking binding between ACE2 and SARS-CoV-2 spike protein with mutations.
Biomed Pharmacother. 2022 May;149:112802. doi: 10.1016/j.biopha.2022.112802. Epub 2022 Mar 9.
4
Epitope Classification and RBD Binding Properties of Neutralizing Antibodies Against SARS-CoV-2 Variants of Concern.
Front Immunol. 2021 Jun 4;12:691715. doi: 10.3389/fimmu.2021.691715. eCollection 2021.
6
Corilagin and 1,3,6-Tri--galloy-β-D-glucose: potential inhibitors of SARS-CoV-2 variants.
Phys Chem Chem Phys. 2021 Jul 14;23(27):14873-14888. doi: 10.1039/d1cp01790j.
7
Biochemical Characterization of SARS-CoV-2 Spike RBD Mutations and Their Impact on ACE2 Receptor Binding.
Front Mol Biosci. 2022 May 23;9:893843. doi: 10.3389/fmolb.2022.893843. eCollection 2022.
9
Recognition through GRP78 is enhanced in the UK, South African, and Brazilian variants of SARS-CoV-2; An in silico perspective.
Biochem Biophys Res Commun. 2021 Jul 12;562:89-93. doi: 10.1016/j.bbrc.2021.05.058. Epub 2021 May 21.
10
Mutations derived from horseshoe bat ACE2 orthologs enhance ACE2-Fc neutralization of SARS-CoV-2.
PLoS Pathog. 2021 Apr 9;17(4):e1009501. doi: 10.1371/journal.ppat.1009501. eCollection 2021 Apr.

引用本文的文献

3
Traditional Chinese Medicine for Viral Pneumonia Therapy: Pharmacological Basis and Mechanistic Insights.
Int J Biol Sci. 2025 Jan 6;21(3):989-1013. doi: 10.7150/ijbs.105086. eCollection 2025.
5
Xuanfei Baidu decoction in the treatment of coronavirus disease 2019 (COVID-19): Efficacy and potential mechanisms.
Heliyon. 2023 Aug 19;9(9):e19163. doi: 10.1016/j.heliyon.2023.e19163. eCollection 2023 Sep.
6
Ginkgolic acids inhibit SARS-CoV-2 and its variants by blocking the spike protein/ACE2 interplay.
Int J Biol Macromol. 2023 Jan 31;226:780-792. doi: 10.1016/j.ijbiomac.2022.12.057. Epub 2022 Dec 12.
7
Rational drug repositioning for coronavirus-associated diseases using directional mapping and side-effect inference.
iScience. 2022 Nov 18;25(11):105348. doi: 10.1016/j.isci.2022.105348. Epub 2022 Oct 13.
8
Phytocompounds and COVID-19: Two years of knowledge.
Phytother Res. 2022 Jun;36(6):2267-2271. doi: 10.1002/ptr.7420. Epub 2022 Feb 16.

本文引用的文献

1
Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity.
Science. 2021 Aug 6;373(6555). doi: 10.1126/science.abi6226. Epub 2021 Jun 24.
2
Structural Consequences of Variation in SARS-CoV-2 B.1.1.7.
J Cell Immunol. 2021;3(2):103-108. doi: 10.33696/immunology.3.085.
3
A SARS-CoV-2 Variant with L452R and E484Q Neutralization Resistance Mutations.
J Clin Microbiol. 2021 Jun 18;59(7):e0074121. doi: 10.1128/JCM.00741-21.
4
No country or continent is on its own in the ongoing COVID-19 pandemic.
Euro Surveill. 2021 Apr;26(17). doi: 10.2807/1560-7917.ES.2021.26.17.2100430.
6
Antibody evasion by the P.1 strain of SARS-CoV-2.
Cell. 2021 May 27;184(11):2939-2954.e9. doi: 10.1016/j.cell.2021.03.055. Epub 2021 Mar 30.
7
Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera.
Cell. 2021 Apr 15;184(8):2201-2211.e7. doi: 10.1016/j.cell.2021.02.033. Epub 2021 Feb 18.
8
Characterizing SARS-CoV-2 genome diversity circulating in South American countries: Signatures of potentially emergent lineages?
Int J Infect Dis. 2021 Apr;105:329-332. doi: 10.1016/j.ijid.2021.02.073. Epub 2021 Feb 20.
9
Screening and evaluation of anti-SARS-CoV-2 components from Ephedra sinica by ACE2/CMC-HPLC-IT-TOF-MS approach.
Anal Bioanal Chem. 2021 May;413(11):2995-3004. doi: 10.1007/s00216-021-03233-7. Epub 2021 Feb 19.
10
Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2.
Phytomedicine. 2021 May;85:153364. doi: 10.1016/j.phymed.2020.153364. Epub 2020 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验