Suppr超能文献

一种通过跟踪发酵过程中的代谢活性来预选青贮接种剂的多传感器微型生物反应器。

A Multi-Sensor Mini-Bioreactor to Preselect Silage Inoculants by Tracking Metabolic Activity During Fermentation.

作者信息

Shan Guilin, Rosner Victoria, Milimonka Andreas, Buescher Wolfgang, Lipski André, Maack Christian, Berchtold Wilfried, Wang Ye, Grantz David A, Sun Yurui

机构信息

Department of Agricultural Engineering, University of Bonn, Bonn, Germany.

ADDCON GmbH, Bitterfeld-Wolfen, Germany.

出版信息

Front Microbiol. 2021 Aug 12;12:673795. doi: 10.3389/fmicb.2021.673795. eCollection 2021.

Abstract

The microbiome in silage may vary substantially from the onset to the completion of fermentation. Improved additives and inoculants are being developed to accelerate the ensiling process, to enhance fermentation quality, and to delay spoilage during feed-out. However, current methods for preselecting and characterizing these amendments are time-consuming and costly. Here, we have developed a multi-sensor mini-bioreactor (MSMB) to track microbial fermentation and additionally presented a mathematical model for the optimal assessment among candidate inoculants based on the Bolza equation, a fundamental formula in optimal control theory. Three sensors [pH, CO, and ethanol (EtOH)] provided data for assessment, with four additional sensors (O, gas pressure, temperature, and atmospheric pressure) to monitor/control the fermentation environment. This advanced MSMB is demonstrated with an experimental method for evaluating three typical species of lactic acid bacteria (LAB), (LB) alone, and LB mixed with (LBLP) or with (LBEF), all cultured in De Man, Rogosa, and Sharpe (MRS) broth. The fermentation process was monitored over 48 h with these candidate microbial strains using the MSMB. The experimental results combine acidification characteristics with production of CO and EtOH, optimal assessment of the microbes, analysis of the metabolic sensitivity to pH, and partitioning of the contribution of each species to fermentation. These new data demonstrate that the MSMB associated with the novel rapid data-processing method may expedite development of microbial amendments for silage additives.

摘要

青贮饲料中的微生物群落从发酵开始到结束可能会有很大变化。目前正在研发改良添加剂和接种剂,以加速青贮过程、提高发酵质量并延缓饲喂期间的变质。然而,当前用于预选和表征这些改良剂的方法既耗时又昂贵。在此,我们开发了一种多传感器微型生物反应器(MSMB)来跟踪微生物发酵,并基于最优控制理论中的基本公式——波尔扎方程,提出了一种用于在候选接种剂中进行最优评估的数学模型。三个传感器[pH值、二氧化碳(CO)和乙醇(EtOH)]提供评估数据,另有四个传感器(氧气、气压、温度和大气压)用于监测/控制发酵环境。通过一种实验方法展示了这种先进的MSMB,该方法用于评估三种典型的乳酸菌(LAB),单独的乳酸杆菌(LB),以及与植物乳杆菌(LBLP)或嗜酸乳杆菌(LBEF)混合的LB,所有这些菌株均在德氏、罗氏和夏普(MRS)肉汤中培养。使用MSMB对这些候选微生物菌株在48小时内的发酵过程进行了监测。实验结果结合了酸化特性与CO和EtOH的产生、微生物的最优评估、对pH值的代谢敏感性分析以及每种菌株对发酵贡献的划分。这些新数据表明,与新型快速数据处理方法相关联的MSMB可能会加速青贮饲料添加剂微生物改良剂的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0620/8406527/b3fe0d8401b2/fmicb-12-673795-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验