Suppr超能文献

一种用于稀疏分段多能计算机断层扫描的先验图像约束鲁棒主成分分析重建方法。

A prior image constraint robust principal component analysis reconstruction method for sparse segmental multi-energy computed tomography.

作者信息

Li Bin, Luo Ning, Zhong Anni, Li Yongbao, Chen Along, Zhou Linghong, Xu Yuan

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou, China.

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.

出版信息

Quant Imaging Med Surg. 2021 Sep;11(9):4097-4114. doi: 10.21037/qims-20-844.

Abstract

BACKGROUND

Multi-energy computed tomography (MECT) is a promising technique in medical imaging, especially for quantitative imaging. However, high technical requirements and system costs barrier its step into clinical practice.

METHODS

We propose a novel sparse segmental MECT (SSMECT) scheme and corresponding reconstruction method, which is a cost-efficient way to realize MECT on a conventional single-source CT. For the data acquisition, the X-ray source is controlled to maintain an energy within a segmental arc, and then switch alternately to another energy level. This scan only needs to switch tube voltage a few times to acquire multi-energy data, but leads to sparse-view and limited-angle issues in image reconstruction. To solve this problem, we propose a prior image constraint robust principal component analysis (PIC-RPCA) reconstruction method, which introduces structural similarity and spectral correlation into the reconstruction.

RESULTS

A numerical simulation and a real phantom experiment were conducted to demonstrate the efficacy and robustness of the scan scheme and reconstruction method. The results showed that our proposed reconstruction method could have achieved better multi-energy images than other competing methods both quantitatively and qualitatively.

CONCLUSIONS

Our proposed SSMECT scan with PIC-RPCA reconstruction method could lower kVp switching frequency while achieving satisfactory reconstruction accuracy and image quality.

摘要

背景

多能量计算机断层扫描(MECT)是医学成像领域一项很有前景的技术,尤其适用于定量成像。然而,其高技术要求和系统成本阻碍了它进入临床实践。

方法

我们提出了一种新颖的稀疏分段MECT(SSMECT)方案及相应的重建方法,这是一种在传统单源CT上实现MECT的经济高效的方式。在数据采集方面,控制X射线源使其在一段弧形内保持一个能量,然后交替切换到另一个能量水平。这种扫描只需切换几次管电压就能获取多能量数据,但在图像重建中会导致稀疏视图和有限角度问题。为解决这个问题,我们提出了一种先验图像约束鲁棒主成分分析(PIC-RPCA)重建方法,该方法在重建中引入了结构相似性和光谱相关性。

结果

进行了数值模拟和真实体模实验,以证明扫描方案和重建方法的有效性和鲁棒性。结果表明,我们提出的重建方法在定量和定性方面都能比其他竞争方法获得更好的多能量图像。

结论

我们提出的采用PIC-RPCA重建方法的SSMECT扫描可以降低千伏切换频率,同时实现令人满意的重建精度和图像质量。

相似文献

5
High-quality initial image-guided 4D CBCT reconstruction.高质量的初始图像引导 4D CBCT 重建。
Med Phys. 2020 Jun;47(5):2099-2115. doi: 10.1002/mp.14060. Epub 2020 Mar 13.

本文引用的文献

8
A review of GPU-based medical image reconstruction.基于 GPU 的医学图像重建综述。
Phys Med. 2017 Oct;42:76-92. doi: 10.1016/j.ejmp.2017.07.024. Epub 2017 Sep 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验