Suppr超能文献

基于空间谱非局部均值算法的多能量锥束CT重建

MULTI-ENERGY CONE-BEAM CT RECONSTRUCTION WITH A SPATIAL SPECTRAL NONLOCAL MEANS ALGORITHM.

作者信息

Li Bin, Shen Chenyang, Chi Yujie, Yang Ming, Lou Yifei, Zhou Linghong, Jia Xun

机构信息

Department of Biomedical Engineering, Southern Medical University, GuangZhou, Guangdong 510515, China.

Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.

出版信息

SIAM J Imaging Sci. 2018;11(2):1205-1229. doi: 10.1137/17M1123237. Epub 2018 May 8.

Abstract

Multi-energy computed tomography (CT) is an emerging medical image modality with a number of potential applications in diagnosis and therapy. However, high system cost and technical barriers obstruct its step into routine clinical practice. In this study, we propose a framework to realize multi-energy cone beam CT (ME-CBCT) on the CBCT system that is widely available and has been routinely used for radiotherapy image guidance. In our method, a kVp switching technique is realized, which acquires x-ray projections with kVp levels cycling through a number of values. For this kVp-switching based ME-CBCT acquisition, x-ray projections of each energy channel are only a subset of all the acquired projections. This leads to an undersampling issue, posing challenges to the reconstruction problem. We propose a spatial spectral non-local means (ssNLM) method to reconstruct ME-CBCT, which employs image correlations along both spatial and spectral directions to suppress noisy and streak artifacts. To address the intensity scale difference at different energy channels, a histogram matching method is incorporated. Our method is different from conventionally used NLM methods in that spectral dimension is included, which helps to effectively remove streak artifacts appearing at different directions in images with different energy channels. Convergence analysis of our algorithm is provided. A comprehensive set of simulation and real experimental studies demonstrate feasibility of our ME-CBCT scheme and the capability of achieving superior image quality compared to conventional filtered backprojection-type (FBP) and NLM reconstruction methods.

摘要

多能计算机断层扫描(CT)是一种新兴的医学成像模式,在诊断和治疗中有许多潜在应用。然而,高昂的系统成本和技术障碍阻碍了其进入常规临床实践。在本研究中,我们提出了一个框架,以在广泛可用且已常规用于放射治疗图像引导的CBCT系统上实现多能锥束CT(ME-CBCT)。在我们的方法中,实现了一种千伏峰值(kVp)切换技术,该技术通过使kVp水平循环通过多个值来获取X射线投影。对于这种基于kVp切换的ME-CBCT采集,每个能量通道的X射线投影只是所有采集投影的一个子集。这导致了欠采样问题,给重建问题带来了挑战。我们提出了一种空间谱非局部均值(ssNLM)方法来重建ME-CBCT,该方法利用空间和谱方向上的图像相关性来抑制噪声和条纹伪影。为了解决不同能量通道处的强度尺度差异,引入了一种直方图匹配方法。我们的方法与传统使用的NLM方法的不同之处在于包含了谱维度,这有助于有效去除在不同能量通道图像中出现在不同方向上的条纹伪影。提供了我们算法的收敛性分析。一系列全面的模拟和实际实验研究证明了我们的ME-CBCT方案的可行性,以及与传统滤波反投影型(FBP)和NLM重建方法相比实现卓越图像质量的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b801/6173488/d25d5040e111/nihms-989069-f0001.jpg

相似文献

引用本文的文献

4
Non-Local Low-Rank Cube-Based Tensor Factorization for Spectral CT Reconstruction.基于非局部低秩立方张量分解的光谱 CT 重建。
IEEE Trans Med Imaging. 2019 Apr;38(4):1079-1093. doi: 10.1109/TMI.2018.2878226. Epub 2018 Oct 26.

本文引用的文献

7
8
Statistical image reconstruction for low-dose CT using nonlocal means-based regularization.基于非局部均值正则化的低剂量CT统计图像重建
Comput Med Imaging Graph. 2014 Sep;38(6):423-35. doi: 10.1016/j.compmedimag.2014.05.002. Epub 2014 May 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验