Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, 46100, Burjassot, Valencia, Spain.
Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
Stem Cell Rev Rep. 2021 Dec;17(6):2245-2261. doi: 10.1007/s12015-021-10239-2. Epub 2021 Sep 2.
Metabolic rewiring and mitochondrial dynamics remodelling are hallmarks of cell reprogramming, but the roles of the reprogramming factors in these changes are not fully understood. Here we show that c-MYC induces biosynthesis of fatty acids and increases the rate of pentose phosphate pathway. Time-course profiling of fatty acids and complex lipids during cell reprogramming using lipidomics revealed a profound remodelling of the lipid content, as well as the saturation and length of their acyl chains, in a c-MYC-dependent manner. Pluripotent cells displayed abundant cardiolipins and scarce phosphatidylcholines, with a prevalence of monounsaturated acyl chains. Cells undergoing cell reprogramming showed an increase in mitochondrial membrane potential that paralleled that of mitochondrial-specific cardiolipins. We conclude that c-MYC controls the rewiring of somatic cell metabolism early in cell reprogramming by orchestrating cell proliferation, synthesis of macromolecular components and lipid remodelling, all necessary processes for a successful phenotypic transition to pluripotency. c-MYC promotes anabolic metabolism, mitochondrial fitness and lipid remodelling early in cell reprogramming. A high rate of aerobic glycolysis is crucial to provide intermediaries for biosynthetic pathways. To ensure the availability of nucleotides, amino acids and lipids for cell proliferation, cells must provide with a constant flux of the elemental building blocks for macromolecule assembly and fulfil the anabolic demands to reach the critical cellular mass levels to satisfactorily undergo cell division. A high rate of aerobic glycolysis is induced by c-MYC, increasing the amounts of intracellular Glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), and glyceraldehyde-3-phosphate (GA3P), which can all enter pentose phosphate pathway (PPP) to produce Ribose-5-Phosphate (R5P) and NADPH, which are necessary for the biosynthesis of biomolecules such as proteins, nucleic acids, or lipids. C-MYC-dependent activation of glucose-6-phosphate dehydrogenase (G6PD) may play a critical role in the shunting of G6P to PPP and generation of NADPH. High glycolytic flux increases the amounts of dihydroxyacetone phosphate (DHAP), which is crucial for biosynthesis of phospholipids and triacylglycerols, and pyruvate (Pyr), which can be converted to citrate (Cit) in the mitochondria and enter the biosynthesis of fatty acids (FA). During cell reprogramming, c-MYC-dependent lipid remodelling leads to Polyunsaturated Fatty Acid (PUFA) downregulation and Monounsaturated Fatty Acid (MUFA) upregulation, which may play critical roles in cytoarchitectural remodelling of cell membrane or non-canonical autophagy, respectively. Cardiolipin (pink dots) rise early in cell reprogramming correlates with an increase in mitochondrial fitness, suggesting that c-MYC may restore proper levels of cardiolipins and antioxidant proteins, such as UCP2, to guarantee an optimal mitochondrial function while upholding ROS levels, reinforcing the idea of cell rejuvenation early in cell reprogramming.
代谢重编程和线粒体动力学重塑是细胞重编程的标志,但重编程因子在这些变化中的作用尚不完全清楚。在这里,我们表明 c-MYC 诱导脂肪酸的生物合成并增加戊糖磷酸途径的速率。使用脂质组学在细胞重编程过程中对脂肪酸和复杂脂质进行时程分析,揭示了脂质含量的深刻重塑,以及其酰基链的饱和度和长度,这是一种依赖于 c-MYC 的方式。多能细胞显示丰富的心磷脂和稀缺的磷脂酰胆碱,具有大量的单不饱和酰基链。在细胞重编程过程中,线粒体膜电位增加,与线粒体特异性心磷脂平行。我们得出的结论是,c-MYC 通过协调细胞增殖、大分子成分的合成和脂质重塑,在细胞重编程早期控制体细胞代谢的重编程,所有这些都是成功表型过渡到多能性所必需的过程。c-MYC 在细胞重编程早期促进合成代谢、线粒体适应性和脂质重塑。有氧糖酵解的高速度对于为生物合成途径提供中间体至关重要。为了确保细胞增殖的核苷酸、氨基酸和脂质的可用性,细胞必须为大分子组装的基本构建块提供恒定的通量,并满足合成代谢需求,以达到临界细胞质量水平,从而令人满意地进行细胞分裂。c-MYC 诱导的有氧糖酵解增加了细胞内葡萄糖-6-磷酸 (G6P)、果糖-6-磷酸 (F6P) 和甘油醛-3-磷酸 (GA3P) 的含量,所有这些都可以进入戊糖磷酸途径 (PPP) 以产生核酮糖-5-磷酸 (R5P) 和 NADPH,这对于生物分子如蛋白质、核酸或脂质的生物合成是必需的。c-MYC 依赖性葡萄糖-6-磷酸脱氢酶 (G6PD) 的激活可能在 G6P 向 PPP 的分流和 NADPH 的产生中发挥关键作用。高糖酵解通量增加了二羟丙酮磷酸 (DHAP) 的含量,DHAP 对于磷脂和三酰甘油的生物合成至关重要,而丙酮酸 (Pyr) 可以在线粒体中转化为柠檬酸 (Cit),并进入脂肪酸 (FA) 的生物合成。在细胞重编程过程中,c-MYC 依赖性脂质重塑导致多不饱和脂肪酸 (PUFA) 下调和单不饱和脂肪酸 (MUFA) 上调,这可能分别在细胞膜的细胞架构重塑或非典型自噬中发挥关键作用。细胞重编程早期心磷脂 (粉色点) 的上调与线粒体适应性的增加相关,这表明 c-MYC 可能恢复适当水平的心磷脂和抗氧化蛋白,如 UCP2,以保证最佳的线粒体功能,同时维持 ROS 水平,这加强了细胞重编程早期细胞年轻化的观点。