Suppr超能文献

通过 novel reduction-dehydration-glutathione conjugation 在 Amaranthus tuberculatus 中对非选择性 4-羟基苯丙酮酸双加氧酶抑制剂除草剂产生抗性。

Resistance to a nonselective 4-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide via novel reduction-dehydration-glutathione conjugation in Amaranthus tuberculatus.

机构信息

Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.

Herbicide Bioscience, Syngenta, Jealott's Hill International Research Centre, Bracknell,, RG42 6EY, UK.

出版信息

New Phytol. 2021 Dec;232(5):2089-2105. doi: 10.1111/nph.17708. Epub 2021 Sep 29.

Abstract

Metabolic resistance to 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides is a threat in controlling waterhemp (Amaranthus tuberculatus) in the USA. We investigated resistance mechanisms to syncarpic acid-3 (SA3), a nonselective, noncommercial HPPD-inhibiting herbicide metabolically robust to Phase I oxidation, in multiple-herbicide-resistant (MHR) waterhemp populations (SIR and NEB) and HPPD inhibitor-sensitive populations (ACR and SEN). Dose-response experiments with SA3 provided ED -based resistant : sensitive ratios of at least 18-fold. Metabolism experiments quantifying parent SA3 remaining in excised leaves during a time course indicated MHR populations displayed faster rates of SA3 metabolism compared to HPPD inhibitor-sensitive populations. SA3 metabolites were identified via LC-MS-based untargeted metabolomics in whole plants. A Phase I metabolite, likely generated by cytochrome P450-mediated alkyl hydroxylation, was detected but was not associated with resistance. A Phase I metabolite consistent with ketone reduction followed by water elimination was detected, creating a putative α,β-unsaturated carbonyl resembling a Michael acceptor site. A Phase II glutathione-SA3 conjugate was associated with resistance. Our results revealed a novel reduction-dehydration-GSH conjugation detoxification mechanism. SA3 metabolism in MHR waterhemp is thus atypical compared to commercial HPPD-inhibiting herbicides. This previously uncharacterized detoxification mechanism presents a unique opportunity for future biorational design by blocking known sites of herbicide metabolism in weeds.

摘要

代谢抗性对 4-羟基苯丙酮酸双加氧酶(HPPD)抑制剂类除草剂是控制美国水苋菜(Amaranthus tuberculatus)的威胁。我们研究了非选择性、非商业性 HPPD 抑制剂类除草剂 syncarpic acid-3(SA3)的抗性机制,该除草剂在代谢上对 Phase I 氧化具有较强的抗性,在多除草剂抗性(MHR)水苋菜种群(SIR 和 NEB)和 HPPD 抑制剂敏感种群(ACR 和 SEN)中均存在抗性机制。用 SA3 进行的剂量反应实验提供了 ED 为基础的抗性:敏感比至少为 18 倍。在一段时间内定量测定离体叶片中残留的母体 SA3 的代谢实验表明,与 HPPD 抑制剂敏感种群相比,MHR 种群具有更快的 SA3 代谢速率。通过基于 LC-MS 的非靶向代谢组学在全植物中鉴定了 SA3 代谢物。检测到一种可能由细胞色素 P450 介导的烷基羟化生成的 Phase I 代谢物,但与抗性无关。检测到一种与酮还原和水消除一致的 Phase I 代谢物,产生了一种类似于迈克尔受体位点的假定的α,β-不饱和羰基。检测到一种与抗性相关的 Phase II 谷胱甘肽-SA3 结合物。我们的结果揭示了一种新的还原-脱水-GSH 结合解毒机制。因此,与商业 HPPD 抑制剂类除草剂相比,MHR 水苋菜中的 SA3 代谢是非典型的。这种以前未被描述的解毒机制为通过阻断杂草中已知的除草剂代谢位点进行未来的生物合理性设计提供了独特的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbfc/9292532/e84340381afe/NPH-232-2089-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验