Institute of TCM-X/MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist/Department of Automation, Tsinghua University, 100084 Beijing, China.
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
Pharmacol Res. 2021 Nov;173:105752. doi: 10.1016/j.phrs.2021.105752. Epub 2021 Sep 2.
Traditional Chinese medicine (TCM) formula is widely used for thousands of years in clinical practice. With the development of artificial intelligence, deep learning models may help doctors prescribe reasonable formulas. Meanwhile, current studies of formula recommendation only focus on the observable clinical symptoms and lack of molecular information. Here, inspired by the theory of TCM network pharmacology, we propose an intelligent formula recommendation system based on deep learning (FordNet), fusing the information of phenotype and molecule. We collected more than 20,000 electronic health records from TCM Master Li Jiren's experience from 2013 to March 2020. In the FordNet system, the feature of diagnosis description is extracted by convolution neural network and the feature of TCM formula is extracted by network embedding, which fusing the molecular information. A hierarchical sampling strategy for data augmentation is designed to effectively learn training samples. Based on the expanded samples, a deep neural network based quantitative optimization model is developed for TCM formula recommendation. FordNet performs significantly better than baseline methods (hit ratio of top 10 improved by 46.9% compared with the best baseline random forest method). Moreover, the molecular information helps FordNet improve 17.3% hit ratio compared with the model using only macro information. Clinical evaluation shows that FordNet can well learn the effective experience of TCM Master and obtain excellent recommendation results. Our study, for the first time, proposes an intelligent recommendation system for TCM formula integrating phenotype and molecule information, which has potential to improve clinical diagnosis and treatment, and promote the shift of TCM research pattern from "experience based, macro" to "data based, macro-micro combined" as well as the development of TCM network pharmacology.
中医(TCM)方剂在临床实践中已广泛应用数千年。随着人工智能的发展,深度学习模型可能有助于医生开出合理的方剂。然而,目前的方剂推荐研究仅关注可观察的临床症状,缺乏分子信息。受中医网络药理学理论的启发,我们提出了一种基于深度学习(FordNet)的智能方剂推荐系统,融合了表型和分子信息。我们从 2013 年到 2020 年 3 月,收集了超过 20000 例来自 TCM 大师李济仁经验的电子健康记录。在 FordNet 系统中,卷积神经网络提取诊断描述特征,网络嵌入提取 TCM 方剂特征,融合了分子信息。设计了分层采样数据增强策略,以有效学习训练样本。基于扩展样本,开发了基于深度神经网络的定量优化模型进行 TCM 方剂推荐。FordNet 的性能明显优于基线方法(与最佳基线随机森林方法相比,前 10 名的命中率提高了 46.9%)。此外,分子信息帮助 FordNet 提高了 17.3%的命中率,而与仅使用宏观信息的模型相比。临床评估表明,FordNet 可以很好地学习 TCM 大师的有效经验,并获得优异的推荐结果。本研究首次提出了一种融合表型和分子信息的 TCM 方剂智能推荐系统,具有提高临床诊断和治疗水平的潜力,促进了 TCM 研究模式从“经验为主、宏观”向“数据为主、宏观与微观结合”的转变,以及 TCM 网络药理学的发展。