Suppr超能文献

大数据科学在 HIV 研究中的出现和发展:2000-2019 年联邦资助研究的文献计量分析。

Emergence and evolution of big data science in HIV research: Bibliometric analysis of federally sponsored studies 2000-2019.

机构信息

Department of Health Services Policy and Management, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA.

Department of Health Promotion, Education, and Behavior, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA.

出版信息

Int J Med Inform. 2021 Oct;154:104558. doi: 10.1016/j.ijmedinf.2021.104558. Epub 2021 Aug 18.

Abstract

BACKGROUND

The rapid growth of inherently complex and heterogeneous data in HIV/AIDS research underscores the importance of Big Data Science. Recently, there have been increasing uptakes of Big Data techniques in basic, clinical, and public health fields of HIV/AIDS research. However, no studies have systematically elaborated on the evolving applications of Big Data in HIV/AIDS research. We sought to explore the emergence and evolution of Big Data Science in HIV/AIDS-related publications that were funded by the US federal agencies.

METHODS

We identified HIV/AIDS and Big Data related publications that were funded by seven federal agencies from 2000 to 2019 by integrating data from National Institutes of Health (NIH) ExPORTER, MEDLINE, and MeSH. Building on bibliometrics and Natural Language Processing (NLP) methods, we constructed co-occurrence networks using bibliographic metadata (e.g., countries, institutes, MeSH terms, and keywords) of the retrieved publications. We then detected clusters among the networks as well as the temporal dynamics of clusters, followed by expert evaluation and clinical implications.

RESULTS

We harnessed nearly 600 thousand publications related to HIV/AIDS, of which 19,528 publications relating to Big Data were included in bibliometric analysis. Results showed that (1) the number of Big Data publications has been increasing since 2000, (2) US institutes have been in close collaborations with China, Canada, and Germany, (3) some institutes (e.g., University of California system, MD Anderson Cancer Center, and Harvard Medical School) are among the most productive institutes and started using Big Data in HIV/AIDS research early, (4) Big Data research was not active in public health disciplines until 2015, (5) research topics such as genomics, HIV comorbidities, population-based studies, Electronic Health Records (EHR), social media, precision medicine, and methodologies such as machine learning, Deep Learning, radiomics, and data mining emerge quickly in recent years.

CONCLUSIONS

We identified a rapid growth in the cross-disciplinary research of HIV/AIDS and Big Data over the past two decades. Our findings demonstrated patterns and trends of prevailing research topics and Big Data applications in HIV/AIDS research and suggested a number of fast-evolving areas of Big Data Science in HIV/AIDS research including secondary analysis of EHR, machine learning, Deep Learning, predictive analysis, and NLP.

摘要

背景

HIV/AIDS 研究中固有复杂且异质数据的快速增长突显了大数据科学的重要性。最近,大数据技术在 HIV/AIDS 研究的基础、临床和公共卫生领域的应用越来越多。然而,尚无研究系统地阐述了大数据在 HIV/AIDS 研究中的不断发展的应用。我们试图探讨由美国联邦机构资助的 HIV/AIDS 相关出版物中大数据科学的出现和发展。

方法

我们通过整合来自美国国立卫生研究院(NIH)ExPORTER、MEDLINE 和 MeSH 的数据,确定了 2000 年至 2019 年期间由七个联邦机构资助的 HIV/AIDS 和大数据相关出版物。基于文献计量学和自然语言处理(NLP)方法,我们使用检索出版物的书目元数据(例如国家、机构、MeSH 术语和关键词)构建了共现网络。然后,我们检测了网络中的聚类以及聚类的时间动态,随后进行了专家评估和临床意义。

结果

我们利用了近 60 万篇与 HIV/AIDS 相关的出版物,其中有 19528 篇与大数据相关的出版物被纳入文献计量学分析。结果表明:(1)自 2000 年以来,大数据出版物的数量一直在增加;(2)美国机构与中国、加拿大和德国密切合作;(3)一些机构(例如加利福尼亚大学系统、MD 安德森癌症中心和哈佛医学院)是最具生产力的机构之一,并早在 HIV/AIDS 研究中就开始使用大数据;(4)直到 2015 年,公共卫生学科的大数据研究才活跃起来;(5)近年来,基因组学、HIV 合并症、基于人群的研究、电子健康记录(EHR)、社交媒体、精准医学以及机器学习、深度学习、放射组学和数据挖掘等方法等研究主题迅速出现。

结论

我们发现,在过去的二十年中,HIV/AIDS 和大数据的跨学科研究呈快速增长。我们的研究结果展示了 HIV/AIDS 研究中主流研究主题和大数据应用的模式和趋势,并提出了 HIV/AIDS 研究中大数据科学的一些快速发展领域,包括 EHR 的二次分析、机器学习、深度学习、预测分析和 NLP。

相似文献

1
Emergence and evolution of big data science in HIV research: Bibliometric analysis of federally sponsored studies 2000-2019.
Int J Med Inform. 2021 Oct;154:104558. doi: 10.1016/j.ijmedinf.2021.104558. Epub 2021 Aug 18.
2
Big data research in nursing: A bibliometric exploration of themes and publications.
J Nurs Scholarsh. 2024 May;56(3):466-477. doi: 10.1111/jnu.12954. Epub 2023 Dec 22.
5
Using big data analytics to improve HIV medical care utilisation in South Carolina: A study protocol.
BMJ Open. 2019 Jul 19;9(7):e027688. doi: 10.1136/bmjopen-2018-027688.
6
Conversational Interfaces for Health: Bibliometric Analysis of Grants, Publications, and Patents.
J Med Internet Res. 2019 Nov 18;21(11):e14672. doi: 10.2196/14672.
8
AIDS in Haiti: a bibliometric analysis.
Bull Med Libr Assoc. 2000 Jan;88(1):56-61.
10
Thirty-five years (1986-2021) of HIV/AIDS in Nigeria: bibliometric and scoping analysis.
AIDS Res Ther. 2022 Dec 21;19(1):64. doi: 10.1186/s12981-022-00489-6.

引用本文的文献

3
Global trends of big data analytics in health research: a bibliometric study.
Front Med (Lausanne). 2025 Jul 1;12:1456286. doi: 10.3389/fmed.2025.1456286. eCollection 2025.
5
Mapping the intersection of HIV and Alzheimer's disease: a bibliometric analysis of emerging research trends.
Front Neurol. 2025 Apr 29;16:1568022. doi: 10.3389/fneur.2025.1568022. eCollection 2025.
6
A bibliometric review of predictive modelling for cervical cancer risk.
Front Res Metr Anal. 2024 Nov 19;9:1493944. doi: 10.3389/frma.2024.1493944. eCollection 2024.
7
Challenges and Opportunities in Big Data Science to Address Health Inequities and Focus the HIV Response.
Curr HIV/AIDS Rep. 2024 Aug;21(4):208-219. doi: 10.1007/s11904-024-00702-3. Epub 2024 Jun 25.
8
A method of Mapping Process for scientific production using the Smart Bibliometrics.
MethodsX. 2023 Sep 6;11:102367. doi: 10.1016/j.mex.2023.102367. eCollection 2023 Dec.
9
Global trends in depression among patients living with HIV: A bibliometric analysis.
Front Psychol. 2023 Mar 9;14:1125300. doi: 10.3389/fpsyg.2023.1125300. eCollection 2023.
10
Big Data and Infectious Disease Epidemiology: Bibliometric Analysis and Research Agenda.
Interact J Med Res. 2023 Mar 31;12:e42292. doi: 10.2196/42292.

本文引用的文献

1
Utilizing Big Data analytics and electronic health record data in HIV prevention, treatment, and care research: a literature review.
AIDS Care. 2024 May;36(5):583-603. doi: 10.1080/09540121.2021.1948499. Epub 2021 Jul 14.
3
Power of Big Data in ending HIV.
AIDS. 2021 May 1;35(Suppl 1):S1-S5. doi: 10.1097/QAD.0000000000002888.
4
Federal funding allocation on HIV/AIDS research in the United States (2008-2018): an exploratory study using Big Data.
AIDS Care. 2023 Aug;35(8):1069-1075. doi: 10.1080/09540121.2021.1896664. Epub 2021 Mar 7.
6
Development of a predictive model for retention in HIV care using natural language processing of clinical notes.
J Am Med Inform Assoc. 2021 Jan 15;28(1):104-112. doi: 10.1093/jamia/ocaa220.
8
Leveraging Patient Safety Research: Efforts Made Fifteen Years Since To Err Is Human.
Stud Health Technol Inform. 2019 Aug 21;264:983-987. doi: 10.3233/SHTI190371.
9
HIV Data to Care-Using Public Health Data to Improve HIV Care and Prevention.
J Acquir Immune Defic Syndr. 2019 Sep 1;82 Suppl 1(Suppl 1):S1-S5. doi: 10.1097/QAI.0000000000002059.
10
How Big Data Science Can Improve Linkage and Retention in Care.
Infect Dis Clin North Am. 2019 Sep;33(3):807-815. doi: 10.1016/j.idc.2019.05.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验