Department of Health Services Policy and Management.
Department of Epidemiology and Biostatistics.
AIDS. 2021 May 1;35(Suppl 1):S19-S28. doi: 10.1097/QAD.0000000000002814.
OBJECTIVES: Ending the HIV epidemic requires innovative use of data for intelligent decision-making from surveillance through treatment. This study sought to examine the usefulness of using linked integrated PLWH health data to predict PLWH's future HIV care status and compare the performance of machine-learning methods for predicting future HIV care status for SC PLWH. DESIGN: We employed supervised machine learning for its ability to predict PLWH's future care status by synthesizing and learning from PLWH's existing health data. This method is appropriate for the nature of integrated PLWH data because of its high volume and dimensionality. METHODS: A data set of 8888 distinct PLWH's health records were retrieved from an integrated PLWH data repository. We experimented and scored seven representative machine-learning models including Bayesian Network, Automated Neural Network, Support Vector Machine, Logistic Regression, LASSO, Decision Trees and Random Forest to best predict PLWH's care status. We further identified principal factors that can predict the retention-in-care based on the champion model. RESULTS: Bayesian Network (F = 0.87, AUC = 0.94, precision = 0.87, recall = 0.86) was the best predictive model, followed by Random Forest (F = 0.78, AUC = 0.81, precision = 0.72, recall = 0.85), Decision Tree (F = 0.76, AUC = 0.75, precision = 0.70, recall = 0.82) and Neural Network (cluster) (F = 0.75, AUC = 0.71, precision = 0.69, recall = 0.81). CONCLUSION: These algorithmic applications of Bayesian Networks and other machine-learning algorithms hold promise for predicting future HIV care status at the individual level. Prediction of future care patterns for SC PLWH can help optimize health service resources for effective interventions. Predictions can also help improve retention across the HIV continuum.
目的:要终结艾滋病疫情,就需要创新性地利用从监测到治疗各个环节的数据,进行明智决策。本研究旨在考察利用关联的综合艾滋病毒感染者健康数据预测艾滋病毒感染者未来护理状况的有效性,并比较机器学习方法预测社区艾滋病毒感染者未来护理状况的性能。
设计:我们采用监督机器学习,通过综合和学习艾滋病毒感染者现有健康数据来预测其未来的护理状况。这种方法适用于综合艾滋病毒感染者数据的性质,因为它的数据量和维度都很高。
方法:从一个综合的艾滋病毒感染者数据存储库中检索了 8888 个不同艾滋病毒感染者的健康记录数据集。我们对包括贝叶斯网络、自动神经网络、支持向量机、逻辑回归、LASSO、决策树和随机森林在内的 7 种有代表性的机器学习模型进行了实验和评分,以最佳预测艾滋病毒感染者的护理状况。我们还根据冠军模型确定了可以预测保留在护理中的主要因素。
结果:贝叶斯网络(F=0.87,AUC=0.94,精度=0.87,召回率=0.86)是最佳预测模型,其次是随机森林(F=0.78,AUC=0.81,精度=0.72,召回率=0.85)、决策树(F=0.76,AUC=0.75,精度=0.70,召回率=0.82)和神经网络(聚类)(F=0.75,AUC=0.71,精度=0.69,召回率=0.81)。
结论:贝叶斯网络和其他机器学习算法的这些算法应用有望在个体层面预测未来的艾滋病毒护理状况。预测社区艾滋病毒感染者未来的护理模式可以帮助优化卫生服务资源,进行有效的干预。预测还可以帮助提高艾滋病毒连续体中的保留率。
Clin Orthop Relat Res. 2020-7
Artif Intell Med. 2019-7-25
Comput Math Methods Med. 2021
PLOS Glob Public Health. 2025-4-24
J Infect Dis. 2023-3-17
AIDS. 2021-5-1