文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习技术在南卡罗来纳州 HIV 感染者医疗保健状况分类中的应用。

Application of machine-learning techniques in classification of HIV medical care status for people living with HIV in South Carolina.

机构信息

Department of Health Services Policy and Management.

Department of Epidemiology and Biostatistics.

出版信息

AIDS. 2021 May 1;35(Suppl 1):S19-S28. doi: 10.1097/QAD.0000000000002814.


DOI:10.1097/QAD.0000000000002814
PMID:33867486
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8162887/
Abstract

OBJECTIVES: Ending the HIV epidemic requires innovative use of data for intelligent decision-making from surveillance through treatment. This study sought to examine the usefulness of using linked integrated PLWH health data to predict PLWH's future HIV care status and compare the performance of machine-learning methods for predicting future HIV care status for SC PLWH. DESIGN: We employed supervised machine learning for its ability to predict PLWH's future care status by synthesizing and learning from PLWH's existing health data. This method is appropriate for the nature of integrated PLWH data because of its high volume and dimensionality. METHODS: A data set of 8888 distinct PLWH's health records were retrieved from an integrated PLWH data repository. We experimented and scored seven representative machine-learning models including Bayesian Network, Automated Neural Network, Support Vector Machine, Logistic Regression, LASSO, Decision Trees and Random Forest to best predict PLWH's care status. We further identified principal factors that can predict the retention-in-care based on the champion model. RESULTS: Bayesian Network (F = 0.87, AUC = 0.94, precision = 0.87, recall = 0.86) was the best predictive model, followed by Random Forest (F = 0.78, AUC = 0.81, precision = 0.72, recall = 0.85), Decision Tree (F = 0.76, AUC = 0.75, precision = 0.70, recall = 0.82) and Neural Network (cluster) (F = 0.75, AUC = 0.71, precision = 0.69, recall = 0.81). CONCLUSION: These algorithmic applications of Bayesian Networks and other machine-learning algorithms hold promise for predicting future HIV care status at the individual level. Prediction of future care patterns for SC PLWH can help optimize health service resources for effective interventions. Predictions can also help improve retention across the HIV continuum.

摘要

目的:要终结艾滋病疫情,就需要创新性地利用从监测到治疗各个环节的数据,进行明智决策。本研究旨在考察利用关联的综合艾滋病毒感染者健康数据预测艾滋病毒感染者未来护理状况的有效性,并比较机器学习方法预测社区艾滋病毒感染者未来护理状况的性能。

设计:我们采用监督机器学习,通过综合和学习艾滋病毒感染者现有健康数据来预测其未来的护理状况。这种方法适用于综合艾滋病毒感染者数据的性质,因为它的数据量和维度都很高。

方法:从一个综合的艾滋病毒感染者数据存储库中检索了 8888 个不同艾滋病毒感染者的健康记录数据集。我们对包括贝叶斯网络、自动神经网络、支持向量机、逻辑回归、LASSO、决策树和随机森林在内的 7 种有代表性的机器学习模型进行了实验和评分,以最佳预测艾滋病毒感染者的护理状况。我们还根据冠军模型确定了可以预测保留在护理中的主要因素。

结果:贝叶斯网络(F=0.87,AUC=0.94,精度=0.87,召回率=0.86)是最佳预测模型,其次是随机森林(F=0.78,AUC=0.81,精度=0.72,召回率=0.85)、决策树(F=0.76,AUC=0.75,精度=0.70,召回率=0.82)和神经网络(聚类)(F=0.75,AUC=0.71,精度=0.69,召回率=0.81)。

结论:贝叶斯网络和其他机器学习算法的这些算法应用有望在个体层面预测未来的艾滋病毒护理状况。预测社区艾滋病毒感染者未来的护理模式可以帮助优化卫生服务资源,进行有效的干预。预测还可以帮助提高艾滋病毒连续体中的保留率。

相似文献

[1]
Application of machine-learning techniques in classification of HIV medical care status for people living with HIV in South Carolina.

AIDS. 2021-5-1

[2]
Using big data analytics to improve HIV medical care utilisation in South Carolina: A study protocol.

BMJ Open. 2019-7-19

[3]
Application of machine learning algorithms in predicting HIV infection among men who have sex with men: Model development and validation.

Front Public Health. 2022

[4]
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?

Clin Orthop Relat Res. 2020-7

[5]
Use of machine learning approaches to predict transition of retention in care among people living with HIV in South Carolina: a real-world data study.

AIDS Care. 2024-12

[6]
Machine learning techniques for mortality prediction in critical traumatic patients: anatomic and physiologic variables from the RETRAUCI study.

BMC Med Res Methodol. 2020-10-20

[7]
Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.

Artif Intell Med. 2019-7-25

[8]
Utilizing electronic health record data to understand comorbidity burden among people living with HIV: a machine learning approach.

AIDS. 2021-5-1

[9]
Efficient Prediction of Missed Clinical Appointment Using Machine Learning.

Comput Math Methods Med. 2021

[10]
Which supervised machine learning algorithm can best predict achievement of minimum clinically important difference in neck pain after surgery in patients with cervical myelopathy? A QOD study.

Neurosurg Focus. 2023-6

引用本文的文献

[1]
Scalable and robust machine learning framework for HIV classification using clinical and laboratory data.

Sci Rep. 2025-5-28

[2]
Role of Artificial Intelligence and Personalized Medicine in Enhancing HIV Management and Treatment Outcomes.

Life (Basel). 2025-5-6

[3]
Use of machine learning in predicting continuity of HIV treatment in selected Nigerian States.

PLOS Glob Public Health. 2025-4-24

[4]
Use of machine learning approaches to predict transition of retention in care among people living with HIV in South Carolina: a real-world data study.

AIDS Care. 2024-12

[5]
Neurological, Behavioral, and Pathophysiological Characterization of the Co-Occurrence of Substance Use and HIV: A Narrative Review.

Brain Sci. 2023-10-19

[6]
Machine learning to predict virological failure among HIV patients on antiretroviral therapy in the University of Gondar Comprehensive and Specialized Hospital, in Amhara Region, Ethiopia, 2022.

BMC Med Inform Decis Mak. 2023-4-21

[7]
Machine Learning Approaches to Understand Cognitive Phenotypes in People With HIV.

J Infect Dis. 2023-3-17

[8]
Predicting HIV Status among Men Who Have Sex with Men in Bulawayo & Harare, Zimbabwe Using Bio-Behavioural Data, Recurrent Neural Networks, and Machine Learning Techniques.

Trop Med Infect Dis. 2022-9-5

[9]
Emergence and evolution of big data science in HIV research: Bibliometric analysis of federally sponsored studies 2000-2019.

Int J Med Inform. 2021-10

[10]
Power of Big Data in ending HIV.

AIDS. 2021-5-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索