文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

治疗双重靶向 Au 脂质体的研制用于有效肿瘤靶向和光热治疗。

Development of theranostic dual-layered Au-liposome for effective tumor targeting and photothermal therapy.

机构信息

Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.

Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.

出版信息

J Nanobiotechnology. 2021 Sep 4;19(1):262. doi: 10.1186/s12951-021-01010-3.


DOI:10.1186/s12951-021-01010-3
PMID:34481489
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8418714/
Abstract

BACKGROUND: Photothermal therapy (PTT) is an emerging anti-cancer therapeutic strategy that generates hyperthermia to ablate cancer cells under laser irradiation. Gold (Au) coated liposome (AL) was reported as an effective PTT agent with good biocompatibility and excretory property. However, exposed Au components on liposomes can cause instability in vivo and difficulty in further functionalization. RESULTS: Herein, we developed a theranostic dual-layered nanomaterial by adding liposomal layer to AL (LAL), followed by attaching polyethylene glycol (PEG) and radiolabeling. Functionalization with PEG improves the in vivo stability of LAL, and radioisotope labeling enables in vivo imaging of LAL. Functionalized LAL is stable in physiological conditions, and Cu labeled LAL (Cu-LAL) shows a sufficient blood circulation property and an effective tumor targeting ability of 16.4%ID g from in vivo positron emission tomography (PET) imaging. Also, intravenously injected LAL shows higher tumor targeting, temperature elevation in vivo, and better PTT effect in orthotopic breast cancer mouse model compared to AL. The tumor growth inhibition rate of LAL was 3.9-fold higher than AL. CONCLUSION: Based on these high stability, in vivo imaging ability, and tumor targeting efficiency, LAL could be a promising theranostic PTT agent.

摘要

背景:光热疗法(PTT)是一种新兴的抗癌治疗策略,它利用激光照射产生的高热来消融癌细胞。金(Au)包覆的脂质体(AL)被报道为一种具有良好生物相容性和排泄性能的有效 PTT 试剂。然而,脂质体上暴露的 Au 成分会导致体内不稳定,并且进一步功能化困难。

结果:本研究通过在 AL 上添加脂质体层(LAL),然后进行聚乙二醇(PEG)功能化和放射性标记,开发了一种治疗诊断两用双层纳米材料。PEG 的功能化提高了 LAL 的体内稳定性,放射性同位素标记使 LAL 的体内成像成为可能。功能化的 LAL 在生理条件下稳定,Cu 标记的 LAL(Cu-LAL)显示出足够的血液循环特性和 16.4%ID g 的有效肿瘤靶向能力,从体内正电子发射断层扫描(PET)成像中可以看出。此外,与 AL 相比,静脉注射的 LAL 表现出更高的肿瘤靶向性、体内温度升高和更好的 PTT 效果。LAL 的肿瘤生长抑制率比 AL 高 3.9 倍。

结论:基于这种高稳定性、体内成像能力和肿瘤靶向效率,LAL 可能成为一种有前途的治疗诊断 PTT 试剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576f/8418714/c93778bdedf7/12951_2021_1010_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576f/8418714/554433d9345f/12951_2021_1010_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576f/8418714/6f5837b1d48b/12951_2021_1010_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576f/8418714/f48a3ed9f6c9/12951_2021_1010_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576f/8418714/2c8d2304bfa1/12951_2021_1010_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576f/8418714/27504520acae/12951_2021_1010_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576f/8418714/829a548dfdc1/12951_2021_1010_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576f/8418714/50fe27ae895f/12951_2021_1010_Sch2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576f/8418714/c93778bdedf7/12951_2021_1010_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576f/8418714/554433d9345f/12951_2021_1010_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576f/8418714/6f5837b1d48b/12951_2021_1010_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576f/8418714/f48a3ed9f6c9/12951_2021_1010_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576f/8418714/2c8d2304bfa1/12951_2021_1010_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576f/8418714/27504520acae/12951_2021_1010_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576f/8418714/829a548dfdc1/12951_2021_1010_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576f/8418714/50fe27ae895f/12951_2021_1010_Sch2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576f/8418714/c93778bdedf7/12951_2021_1010_Fig6_HTML.jpg

相似文献

[1]
Development of theranostic dual-layered Au-liposome for effective tumor targeting and photothermal therapy.

J Nanobiotechnology. 2021-9-4

[2]
Multifunctional Gold Helix Phototheranostic Biohybrid That Enables Targeted Image-Guided Photothermal Therapy in Breast Cancer.

ACS Appl Mater Interfaces. 2022-8-24

[3]
Iron oxide-gold core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance.

J Cancer Res Clin Oncol. 2019-3-7

[4]
Polyethylene glycol-coated ultrasmall superparamagnetic iron oxide nanoparticles-coupled sialyl Lewis X nanotheranostic platform for nasopharyngeal carcinoma imaging and photothermal therapy.

J Nanobiotechnology. 2021-6-8

[5]
Synthesis of heteronanostructures for multimodality molecular imaging-guided photothermal therapy.

J Mater Chem B. 2020-11-18

[6]
Cu-Au alloy nanostructures coated with aptamers: a simple, stable and highly effective platform for in vivo cancer theranostics.

Nanoscale. 2016-1-28

[7]
Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy.

J Control Release. 2017-5-10

[8]
⁶⁴Cu-Doped PdCu@Au Tripods: A Multifunctional Nanomaterial for Positron Emission Tomography and Image-Guided Photothermal Cancer Treatment.

ACS Nano. 2016-2-2

[9]
Liposome-Templated Indocyanine Green J- Aggregates for Near-Infrared Imaging and Stable Photothermal Heating.

Nanotheranostics. 2020

[10]
Nanococktail Based on AIEgens and Semiconducting Polymers: A Single Laser Excited Image-Guided Dual Photothermal Therapy.

Theranostics. 2020

引用本文的文献

[1]
Gold Nanoparticle-mRNA Conjugates Encapsulated in Lipid Nanoparticles for Coordinated Codelivery of Multiple mRNAs.

ACS Omega. 2025-7-25

[2]
Defect-engineered magnetic bismuth nanomedicine for dual-modal imaging and synergistic lung tumor therapy.

Mater Today Bio. 2025-3-18

[3]
Navigating the Clinical Landscape of Liposomal Therapeutics in Cancer Treatment.

Pharmaceutics. 2025-2-18

[4]
A state-of-the-art review of the recent advances of theranostic liposome hybrid nanoparticles in cancer treatment and diagnosis.

Cancer Cell Int. 2025-1-27

[5]
Inductively Coupled Plasma-Mass Spectrometry (ICP-MS): An Emerging Tool in Radiopharmaceutical Science.

J Am Chem Soc. 2024-11-13

[6]
Layer-by-Layer Nanoparticle Assembly for Biomedicine: Mechanisms, Technologies, and Advancement via Acoustofluidics.

ACS Appl Nano Mater. 2024-7-16

[7]
Biopolymer-Based Nanomedicine for Cancer Therapy: Opportunities and Challenges.

Int J Nanomedicine. 2024

[8]
Tracking Drugs and Lipids: Quantitative Mass Spectrometry Imaging of Liposomal Doxorubicin Delivery and Bilayer Fate in Three-Dimensional Tumor Models.

Anal Chem. 2024-6-4

[9]
Adjuvant Novel Nanocarrier-Based Targeted Therapy for Lung Cancer.

Molecules. 2024-2-29

[10]
Development of finely tuned liposome nanoplatform for macrophage depletion.

J Nanobiotechnology. 2024-2-29

本文引用的文献

[1]
Aggregation affects optical properties and photothermal heating of gold nanospheres.

Sci Rep. 2021-1-13

[2]
Novel FGFR4-Targeting Single-Domain Antibodies for Multiple Targeted Therapies against Rhabdomyosarcoma.

Cancers (Basel). 2020-11-10

[3]
Clinical development and potential of photothermal and photodynamic therapies for cancer.

Nat Rev Clin Oncol. 2020-11

[4]
Anti-Epcam Aptamer (Syl3c)-Functionalized Liposome for Targeted Delivery Of Doxorubicin: In Vitro And In Vivo Antitumor Studies in Mice Bearing C26 Colon Carcinoma.

Nanoscale Res Lett. 2020-5-7

[5]
Recent Progress of Potentiating Immune Checkpoint Blockade with External Stimuli-an Industry Perspective.

Adv Sci (Weinh). 2020-2-28

[6]
Photothermally activatable PDA immune nanomedicine combined with PD-L1 checkpoint blockade for antimetastatic cancer photoimmunotherapy.

J Mater Chem B. 2019-3-18

[7]
HER2 targeted biological macromolecule modified liposomes for improved efficacy of capecitabine in breast cancer.

Int J Biol Macromol. 2020-2-13

[8]
Updates on the use of liposomes for active tumor targeting in cancer therapy.

Nanomedicine (Lond). 2019-12-5

[9]
Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy.

Nat Commun. 2019-10-25

[10]
Aqueous Phase Synthesis of Cu S Nanostructures and Their Photothermal Generation Study.

ACS Omega. 2019-8-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索