Suppr超能文献

基于编码可见边缘先验的神经网络用于有限角度计算机断层扫描重建。

A neural network with encoded visible edge prior for limited-angle computed tomography reconstruction.

机构信息

School of Mathematical Sciences, Capital Normal University, Beijing, China.

Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing, China.

出版信息

Med Phys. 2021 Oct;48(10):6464-6481. doi: 10.1002/mp.15205. Epub 2021 Sep 18.

Abstract

PURPOSE

Limited-angle computed tomography is a challenging but important task in certain medical and industrial applications for nondestructive testing. The limited-angle reconstruction problem is highly ill-posed and conventional reconstruction algorithms would introduce heavy artifacts. Various models and methods have been proposed to improve the quality of reconstructions by introducing different priors regarding to the projection data or ideal images. However, the assumed priors might not be practically applicable to all limited-angle reconstruction problems. Convolutional neural network (CNN) exhibits great promise in the modeling of data coupling and has recently become an important technique in medical imaging applications. Although existing CNN methods have demonstrated promising results, their robustness is still a concern. In this paper, in light of the theory of visible and invisible boundaries, we propose an alternating edge-preserving diffusion and smoothing neural network (AEDSNN) for limited-angle reconstruction that builds the visible boundaries as priors into its structure. The proposed method generalizes the alternating edge-preserving diffusion and smoothing (AEDS) method for limited-angle reconstruction developed in the literature by replacing its regularization terms by CNNs, by which the piecewise constant assumption assumed by AEDS is effectively relaxed.

METHODS

The AEDSNN is derived by unrolling the AEDS algorithm. AEDSNN consists of several blocks, and each block corresponds to one iteration of the AEDS algorithm. In each iteration of the AEDS algorithm, three subproblems are sequentially solved. So, each block of AEDSNN possesses three main layers: data matching layer, -direction regularization layer for visible edges diffusion, and -direction regularization layer for artifacts suppressing. The data matching layer is implemented by conventional ordered-subset simultaneous algebraic reconstruction technique (OS-SART) reconstruction algorithm, while the two regularization layers are modeled by CNNs for more intelligent and better encoding of priors regarding to the reconstructed images. To further strength the visible edge prior, the attention mechanism and the pooling layers are incorporated into AEDSNN to facilitate the procedure of edge-preserving diffusion from visible edges.

RESULTS

We have evaluated the performance of AEDSNN by comparing it with popular algorithms for limited-angle reconstruction. Experiments on the medical dataset show that the proposed AEDSNN effectively breaks through the piecewise constant assumption usually assumed by conventional reconstruction algorithms, and works much better for piecewise smooth images with nonsharp edges. Experiments on the printed circuit board (PCB) dataset show that AEDSNN can better encode and utilize the visible edge prior, and its reconstructions are consistently better compared to the competing algorithms.

CONCLUSIONS

A deep-learning approach for limited-angle reconstruction is proposed in this paper, which significantly outperforms existing methods. The superiority of AEDSNN consists of three aspects. First, by the virtue of CNN, AEDSNN is free of parameter-tuning. This is a great facility compared to conventional reconstruction methods; Second, AEDSNN is quite fast. Conventional reconstruction methods usually need hundreds even thousands of iterations, while AEDSNN just needs three to five iterations (i.e., blocks); Third, the learned regularizer by AEDSNN enjoys a broader application capacity, which could work well with piecewise smooth images and surpass the piecewise constant assumption frequently assumed for computed tomography images.

摘要

目的

在某些医学和工业应用的无损检测中,有限角度计算机断层扫描是一项具有挑战性但很重要的任务。有限角度重建问题高度不适定,传统的重建算法会引入严重的伪影。各种模型和方法已经被提出,通过对投影数据或理想图像引入不同的先验来提高重建质量。然而,假设的先验可能并不适用于所有有限角度重建问题。卷积神经网络(CNN)在数据耦合的建模方面表现出巨大的潜力,并且最近已成为医学成像应用中的重要技术。尽管现有的 CNN 方法已经展示了有希望的结果,但它们的鲁棒性仍然是一个关注点。在本文中,根据可见和不可见边界的理论,我们提出了一种用于有限角度重建的交替边缘保持扩散和平滑神经网络(AEDSNN),它将可见边界构建为结构中的先验。所提出的方法通过用 CNN 替换文献中开发的用于有限角度重建的交替边缘保持扩散和平滑(AEDS)方法中的正则化项,推广了 AEDS 方法。通过这种方式,AEDS 中假设的分段常数假设得到了有效放松。

方法

AEDSNN 通过展开 AEDS 算法得到。AEDSNN 由几个块组成,每个块对应于 AEDS 算法的一次迭代。在 AEDS 算法的每次迭代中,依次求解三个子问题。因此,AEDSNN 的每个块都有三个主要层:数据匹配层、用于可见边缘扩散的 方向正则化层和用于抑制伪影的 方向正则化层。数据匹配层由传统的有序子集同时代数重建技术(OS-SART)重建算法实现,而两个正则化层由 CNN 建模,以更智能和更好地对重建图像的先验进行编码。为了进一步加强可见边缘的先验,将注意力机制和池化层合并到 AEDSNN 中,以促进从可见边缘进行边缘保持扩散的过程。

结果

我们通过将 AEDSNN 与用于有限角度重建的流行算法进行比较来评估其性能。在医学数据集上的实验表明,所提出的 AEDSNN 有效地突破了传统重建算法通常假设的分段常数假设,并且对于具有不清晰边缘的分段平滑图像效果更好。在印刷电路板(PCB)数据集上的实验表明,AEDSNN 可以更好地编码和利用可见边缘的先验,并且其重建结果始终优于竞争算法。

结论

本文提出了一种用于有限角度重建的深度学习方法,该方法显著优于现有的方法。AEDSNN 的优势在于三个方面。首先,由于 CNN,AEDSNN 无需参数调整。与传统重建方法相比,这是一个巨大的便利;其次,AEDSNN 速度非常快。传统的重建方法通常需要数百甚至数千次迭代,而 AEDSNN 只需要三到五次迭代(即块);第三,AEDSNN 学习到的正则化器具有更广泛的应用能力,可以很好地处理分段平滑图像,并超越计算断层扫描图像中经常假设的分段常数假设。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验