Suppr超能文献

基于深度学习的 Tikhonov 伪逆先验超声声速层析重建。

Deep-Learning-Based Ultrasound Sound-Speed Tomography Reconstruction with Tikhonov Pseudo-Inverse Priori.

机构信息

School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China.

Research Institute for Frontier Science, Beihang University, Beijing, China.

出版信息

Ultrasound Med Biol. 2022 Oct;48(10):2079-2094. doi: 10.1016/j.ultrasmedbio.2022.05.033. Epub 2022 Jul 31.

Abstract

Ultrasound sound-speed tomography (USST) is a promising technology for breast imaging and breast cancer detection. Its reconstruction is a complex non-linear mapping from the projection data to the sound-speed image (SSI). The traditional reconstruction methods include mainly the ray-based methods and the waveform-based methods. The ray-based methods with linear approximation have low computational cost but low reconstruction quality; the full wave-based methods with the complex non-linear model have high quality but high cost. To achieve both high quality and low cost, we introduced traditional linear approximation as prior knowledge into a deep neural network and treated the complex non-linear mapping of USST reconstruction as a combination of linear mapping and non-linear mapping. In the proposed method, the linear mapping was seamlessly implemented with a fully connected layer and initialized using the Tikhonov pseudo-inverse matrix. The non-linear mapping was implemented using a U-shape Net (U-Net). Furthermore, we proposed the Tikhonov U-shape net (TU-Net), in which the linear mapping was done before the non-linear mapping, and the U-shape Tikhonov net (UT-Net), in which the non-linear mapping was done before the linear mapping. Moreover, we conducted simulations and experiments for evaluation. In the numerical simulation, the root-mean-squared error was 6.49 and 4.29 m/s for the UT-Net and TU-Net, the peak signal-to-noise ratio was 49.01 and 52.90 dB, the structural similarity was 0.9436 and 0.9761 and the reconstruction time was 10.8 and 11.3 ms, respectively. In this study, the SSIs obtained with the proposed methods exhibited high sound-speed accuracy. Both the UT-Net and the TU-Net achieved high quality and low computational cost.

摘要

超声声速层析成像(USST)是一种很有前途的乳腺成像和乳腺癌检测技术。它的重建是一个从投影数据到声速图像(SSI)的复杂非线性映射。传统的重建方法主要包括基于射线的方法和基于波形的方法。基于射线的线性近似方法具有较低的计算成本,但重建质量较低;基于全波的复杂非线性模型方法具有较高的质量,但成本较高。为了实现高质量和低成本,我们将传统的线性近似作为先验知识引入到深度神经网络中,并将 USST 重建的复杂非线性映射视为线性映射和非线性映射的组合。在所提出的方法中,线性映射是通过一个全连接层无缝实现的,并使用 Tikhonov 伪逆矩阵进行初始化。非线性映射是使用 U 形网络(U-Net)实现的。此外,我们提出了 Tikhonov U 形网络(TU-Net),其中线性映射在非线性映射之前进行,U 形 Tikhonov 网络(UT-Net),其中非线性映射在线性映射之前进行。此外,我们进行了模拟和实验评估。在数值模拟中,UT-Net 和 TU-Net 的均方根误差分别为 6.49 和 4.29 m/s,峰值信噪比分别为 49.01 和 52.90 dB,结构相似性分别为 0.9436 和 0.9761,重建时间分别为 10.8 和 11.3 ms。在这项研究中,所提出的方法获得的 SSI 表现出了很高的声速精度。UT-Net 和 TU-Net 都实现了高质量和低计算成本。

相似文献

1
Deep-Learning-Based Ultrasound Sound-Speed Tomography Reconstruction with Tikhonov Pseudo-Inverse Priori.
Ultrasound Med Biol. 2022 Oct;48(10):2079-2094. doi: 10.1016/j.ultrasmedbio.2022.05.033. Epub 2022 Jul 31.
2
A Deep Learning-Based Automatic First-Arrival Picking Method for Ultrasound Sound-Speed Tomography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Aug;68(8):2675-2686. doi: 10.1109/TUFFC.2021.3074983. Epub 2021 Jul 26.
3
Reconstruction for plane-wave ultrasound imaging using modified U-Net-based beamformer.
Comput Med Imaging Graph. 2022 Jun;98:102073. doi: 10.1016/j.compmedimag.2022.102073. Epub 2022 May 10.
4
A dual-domain neural network based on sinogram synthesis for sparse-view CT reconstruction.
Comput Methods Programs Biomed. 2022 Nov;226:107168. doi: 10.1016/j.cmpb.2022.107168. Epub 2022 Oct 1.
5
An investigation of quantitative accuracy for deep learning based denoising in oncological PET.
Phys Med Biol. 2019 Aug 21;64(16):165019. doi: 10.1088/1361-6560/ab3242.
8
Deep Learning Ultrasound Computed Tomography Under Sparse Sampling.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Sep;70(9):1084-1100. doi: 10.1109/TUFFC.2023.3299954. Epub 2023 Aug 29.
9
DeepUCT: Complex cascaded deep learning network for improved ultrasound tomography.
Phys Med Biol. 2022 Mar 11;67(6). doi: 10.1088/1361-6560/ac5296.
10
Structure-preserved meta-learning uniting network for improving low-dose CT quality.
Phys Med Biol. 2022 Dec 12;67(24). doi: 10.1088/1361-6560/aca194.

引用本文的文献

1
Spatial and channel attention-based conditional Wasserstein GAN for direct and rapid image reconstruction in ultrasound computed tomography.
Biomed Eng Lett. 2023 Aug 17;14(1):57-68. doi: 10.1007/s13534-023-00310-x. eCollection 2024 Jan.

本文引用的文献

1
A neural network with encoded visible edge prior for limited-angle computed tomography reconstruction.
Med Phys. 2021 Oct;48(10):6464-6481. doi: 10.1002/mp.15205. Epub 2021 Sep 18.
2
Anatomically aided PET image reconstruction using deep neural networks.
Med Phys. 2021 Sep;48(9):5244-5258. doi: 10.1002/mp.15051. Epub 2021 Jul 28.
3
A Deep Learning-Based Automatic First-Arrival Picking Method for Ultrasound Sound-Speed Tomography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Aug;68(8):2675-2686. doi: 10.1109/TUFFC.2021.3074983. Epub 2021 Jul 26.
5
DIR-DBTnet: Deep iterative reconstruction network for three-dimensional digital breast tomosynthesis imaging.
Med Phys. 2021 May;48(5):2289-2300. doi: 10.1002/mp.14779. Epub 2021 Mar 16.
6
Ultrasound transmission tomography image reconstruction with a fully convolutional neural network.
Phys Med Biol. 2020 Nov 27;65(23):235021. doi: 10.1088/1361-6560/abb5c3.
7
Self-Attention Convolutional Neural Network for Improved MR Image Reconstruction.
Inf Sci (N Y). 2019 Jul;490:317-328. doi: 10.1016/j.ins.2019.03.080. Epub 2019 Apr 1.
8
A hybrid convolutional neural network for super-resolution reconstruction of MR images.
Med Phys. 2020 Jul;47(7):3013-3022. doi: 10.1002/mp.14152. Epub 2020 Apr 27.
9
k-Space deep learning for reference-free EPI ghost correction.
Magn Reson Med. 2019 Dec;82(6):2299-2313. doi: 10.1002/mrm.27896. Epub 2019 Jul 18.
10
k -Space Deep Learning for Accelerated MRI.
IEEE Trans Med Imaging. 2020 Feb;39(2):377-386. doi: 10.1109/TMI.2019.2927101. Epub 2019 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验