School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China.
Research Institute for Frontier Science, Beihang University, Beijing, China.
Ultrasound Med Biol. 2022 Oct;48(10):2079-2094. doi: 10.1016/j.ultrasmedbio.2022.05.033. Epub 2022 Jul 31.
Ultrasound sound-speed tomography (USST) is a promising technology for breast imaging and breast cancer detection. Its reconstruction is a complex non-linear mapping from the projection data to the sound-speed image (SSI). The traditional reconstruction methods include mainly the ray-based methods and the waveform-based methods. The ray-based methods with linear approximation have low computational cost but low reconstruction quality; the full wave-based methods with the complex non-linear model have high quality but high cost. To achieve both high quality and low cost, we introduced traditional linear approximation as prior knowledge into a deep neural network and treated the complex non-linear mapping of USST reconstruction as a combination of linear mapping and non-linear mapping. In the proposed method, the linear mapping was seamlessly implemented with a fully connected layer and initialized using the Tikhonov pseudo-inverse matrix. The non-linear mapping was implemented using a U-shape Net (U-Net). Furthermore, we proposed the Tikhonov U-shape net (TU-Net), in which the linear mapping was done before the non-linear mapping, and the U-shape Tikhonov net (UT-Net), in which the non-linear mapping was done before the linear mapping. Moreover, we conducted simulations and experiments for evaluation. In the numerical simulation, the root-mean-squared error was 6.49 and 4.29 m/s for the UT-Net and TU-Net, the peak signal-to-noise ratio was 49.01 and 52.90 dB, the structural similarity was 0.9436 and 0.9761 and the reconstruction time was 10.8 and 11.3 ms, respectively. In this study, the SSIs obtained with the proposed methods exhibited high sound-speed accuracy. Both the UT-Net and the TU-Net achieved high quality and low computational cost.
超声声速层析成像(USST)是一种很有前途的乳腺成像和乳腺癌检测技术。它的重建是一个从投影数据到声速图像(SSI)的复杂非线性映射。传统的重建方法主要包括基于射线的方法和基于波形的方法。基于射线的线性近似方法具有较低的计算成本,但重建质量较低;基于全波的复杂非线性模型方法具有较高的质量,但成本较高。为了实现高质量和低成本,我们将传统的线性近似作为先验知识引入到深度神经网络中,并将 USST 重建的复杂非线性映射视为线性映射和非线性映射的组合。在所提出的方法中,线性映射是通过一个全连接层无缝实现的,并使用 Tikhonov 伪逆矩阵进行初始化。非线性映射是使用 U 形网络(U-Net)实现的。此外,我们提出了 Tikhonov U 形网络(TU-Net),其中线性映射在非线性映射之前进行,U 形 Tikhonov 网络(UT-Net),其中非线性映射在线性映射之前进行。此外,我们进行了模拟和实验评估。在数值模拟中,UT-Net 和 TU-Net 的均方根误差分别为 6.49 和 4.29 m/s,峰值信噪比分别为 49.01 和 52.90 dB,结构相似性分别为 0.9436 和 0.9761,重建时间分别为 10.8 和 11.3 ms。在这项研究中,所提出的方法获得的 SSI 表现出了很高的声速精度。UT-Net 和 TU-Net 都实现了高质量和低计算成本。