Suppr超能文献

唾液腺癌、肿瘤和正常组织及其匀浆的拉曼光谱和表面增强拉曼光谱(SERS)的化学计量学分析:为临床诊断新工具的开发。

Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) spectra of salivary glands carcinoma, tumor and healthy tissues and their homogenates analyzed by chemometry: Towards development of the novel tool for clinical diagnosis.

机构信息

Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.

Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.

出版信息

Anal Chim Acta. 2021 Sep 8;1177:338784. doi: 10.1016/j.aca.2021.338784. Epub 2021 Jun 18.

Abstract

In this study, two approaches to salivary glands studies are presented: Raman imaging (RI) of tissue cross-section and surface-enhanced Raman spectroscopy (SERS) of tissue homogenates prepared according to elaborated protocol. Collected and analyzed data demonstrate the significant potential of SERS combined with multivariate analysis for distinguishing carcinoma or tumor from the normal salivary gland tissues as a rapid, label-free tool in cancer detection in oncological diagnostics. Raman imaging allows a detailed analysis of the cell wall's chemical composition; thus, the compound's distribution can be semi-quantitatively analyzed, while SERS of tissue homogenates allow for detailed analysis of all moieties forming these tissues. In this sense, SERS is more sensitive and reliable to study any changes in the area of infected tissues. Principal component analysis (PCA), as an unsupervised pattern recognition method, was used to identify the differences in the SERS salivary glands homogenates. The partial least squares-discriminant analysis (PLS-DA), the supervised pattern classification technique, was also used to strengthen further the computed model based on the latent variables in the SERS spectra. Moreover, the chemometric quantification of obtained data was analyzed using principal component regression (PCR) multivariate calibration. The presented data prove that the PCA algorithm allows for 91% in seven following components and the determination between healthy and tumor salivary gland homogenates. The PCR and PLS-DA methods predict 90% and 95% of the variance between the studied groups (in 6 components and 4 factors, respectively). Moreover, according to calculated RMSEC (RMSEP), R2C (R2P) values and correlation accuracy (based on the ROC curve), the PLS-DA model fits better for the studied data. Thus, SERS methods combined with PLS-DA analysis can be used to differentiate healthy, neoplastic, and mixed tissues as a competitive tool in relation to the commonly used method of histopathological staining of tumor tissue.

摘要

在这项研究中,介绍了两种唾液腺研究方法:组织切片的拉曼成像(RI)和根据详细方案制备的组织匀浆的表面增强拉曼光谱(SERS)。收集和分析的数据表明,SERS 结合多元分析在癌症检测中的快速、无标记工具方面具有显著的潜力,可用于区分癌或肿瘤与正常唾液腺组织。拉曼成像允许对细胞壁的化学成分进行详细分析;因此,可以对化合物的分布进行半定量分析,而组织匀浆的 SERS 则允许对形成这些组织的所有部分进行详细分析。在这个意义上,SERS 对研究感染组织区域的任何变化更敏感和可靠。主成分分析(PCA)作为一种无监督的模式识别方法,用于识别 SERS 唾液腺匀浆的差异。偏最小二乘判别分析(PLS-DA),一种监督模式分类技术,也用于基于 SERS 光谱中的潜在变量进一步加强计算模型。此外,还使用主成分回归(PCR)多元校准对获得的数据进行化学计量定量分析。所呈现的数据证明,PCA 算法允许在七个后续组件中对 91%和健康与肿瘤唾液腺匀浆之间的 91%进行区分。PCR 和 PLS-DA 方法分别预测 90%和 95%的研究组之间的方差(分别在 6 个组件和 4 个因子中)。此外,根据计算出的 RMSEC(RMSEP)、R2C(R2P)值和相关性准确性(基于 ROC 曲线),PLS-DA 模型更适合研究数据。因此,SERS 方法结合 PLS-DA 分析可用于区分健康、肿瘤和混合组织,作为相对于肿瘤组织组织病理学染色常用方法的竞争工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验