Suppr超能文献

基于随机假设残差的内点聚类

Inlier Clustering based on the Residuals of Random Hypotheses.

作者信息

Kutbi Mohammed, Chang Yizhe, Mordohai Philippos

机构信息

Department of Computer Science, Saudi Electronic University, Jeddah, Saudi Arabia.

Department of Mechanical Engineering, California State Polytechnic University, Pomona, CA 91768, USA.

出版信息

Pattern Recognit Lett. 2021 Oct;150:101-107. doi: 10.1016/j.patrec.2021.07.007. Epub 2021 Jul 21.

Abstract

We present an approach for motion clustering based on a novel observation that a signature for putative pixel correspondences can be generated by collecting their residuals with respect to model hypotheses drawn randomly from the data. Inliers of the same motion cluster should have strongly correlated residuals, which are low when a hypothesis is consistent with the data in the cluster and high otherwise. After evaluating a number of hypotheses, members of the same cluster can be identified based on these correlations. Due to this property, we named our approach . An important advantage of ICR is that it does not require an inlier-outlier threshold or parameter tuning. In addition, we propose a supervised recursive formulation of ICR (r-ICR) that, unlike many motion clustering methods, does not require the number of clusters to be known a priori, as long as annotated data are available for training. We validate ICR and r-ICR on several publicly available datasets for robust geometric model fitting.

摘要

我们提出了一种基于新颖观察结果的运动聚类方法,即通过收集相对于从数据中随机抽取的模型假设的残差,可以生成假定像素对应关系的签名。同一运动聚类的内点应该具有高度相关的残差,当假设与聚类中的数据一致时残差较低,否则残差较高。在评估了多个假设之后,可以根据这些相关性识别同一聚类的成员。由于这一特性,我们将我们的方法命名为。ICR的一个重要优点是它不需要内点-外点阈值或参数调整。此外,我们提出了一种ICR的监督递归公式(r-ICR),与许多运动聚类方法不同,只要有带注释的数据可用于训练,它不需要事先知道聚类的数量。我们在几个公开可用的数据集上验证了ICR和r-ICR,以进行稳健的几何模型拟合。

相似文献

1
Inlier Clustering based on the Residuals of Random Hypotheses.基于随机假设残差的内点聚类
Pattern Recognit Lett. 2021 Oct;150:101-107. doi: 10.1016/j.patrec.2021.07.007. Epub 2021 Jul 21.
4
Marginalizing Sample Consensus.边缘化样本一致性
IEEE Trans Pattern Anal Mach Intell. 2022 Nov;44(11):8420-8432. doi: 10.1109/TPAMI.2021.3103562. Epub 2022 Oct 4.
5
Graph-Cut RANSAC: Local Optimization on Spatially Coherent Structures.图割随机抽样一致性算法:对空间相干结构进行局部优化
IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):4961-4974. doi: 10.1109/TPAMI.2021.3071812. Epub 2022 Aug 4.
7
A New Approach to Robust Estimation of Parametric Structures.一种稳健估计参数结构的新方法。
IEEE Trans Pattern Anal Mach Intell. 2021 Nov;43(11):3754-3769. doi: 10.1109/TPAMI.2020.2994190. Epub 2021 Oct 1.
8
The Random Cluster Model for Robust Geometric Fitting.随机聚类模型在稳健几何拟合中的应用。
IEEE Trans Pattern Anal Mach Intell. 2014 Aug;36(8):1658-71. doi: 10.1109/TPAMI.2013.2296310.
9

本文引用的文献

1
Sparse subspace clustering: algorithm, theory, and applications.稀疏子空间聚类:算法、理论与应用。
IEEE Trans Pattern Anal Mach Intell. 2013 Nov;35(11):2765-81. doi: 10.1109/TPAMI.2013.57.
2
USAC: a universal framework for random sample consensus.USAC:一种通用的随机抽样一致性框架。
IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):2022-38. doi: 10.1109/TPAMI.2012.257.
3
Simultaneously fitting and segmenting multiple-structure data with outliers.同时拟合和分割具有异常值的多结构数据。
IEEE Trans Pattern Anal Mach Intell. 2012 Jun;34(6):1177-92. doi: 10.1109/TPAMI.2011.216.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验