Suppr超能文献

病例对照设计下基于Copula模型的半参数交互作用检验

A COPULA-MODEL BASED SEMIPARAMETRIC INTERACTION TEST UNDER THE CASE-CONTROL DESIGN.

作者信息

Zhang Hong, Qin Jing, Landi Maria, Caporaso Neil, Yu Kai

机构信息

Fudan University.

National Institutes of Health.

出版信息

Stat Sin. 2013 Oct;23(4):1505-1521. doi: 10.5705/ss.2012.013s.

Abstract

It is important to study the interaction between two risk factors in molecular epidemiology studies. To improve the power for the detection of interaction, some statistical testing procedures have been proposed in the literature by incorporating certain assumptions on the underlying joint distribution of the two risk factors. For example, the well known case-only test used in genetic epidemiology studies is derived under the assumption of independency between the two considered risk factors. However, those testing procedures could have detrimental effects on both false positive and false negative rates when the assumptions are not met. We propose to use a parametric copula function to model the joint distribution while leaving the marginal distributions for the two risk factors totally unspecified. A unified approach is proposed to estimate/test the interaction effect. This approach is very flexible and can be applied to study the interaction between two risk factors that are continuous or discrete. A simulation study demonstrates that the proposed approach is generally more powerful than the traditional robust test derived under the standard logistic regression without specifying the relationship between the two risk factors. The performance of the proposed approach is comparable with the case-only test when the two risk factors are indeed independent in the control population. Unlike the case-only test, the proposed test can still maintain the correct type I error rate when the independence assumption is not valid. The application of the proposed procedure is demonstrated through two cancer epidemiology studies.

摘要

在分子流行病学研究中,研究两个风险因素之间的相互作用很重要。为了提高检测相互作用的效能,文献中通过对两个风险因素的潜在联合分布纳入某些假设,提出了一些统计检验程序。例如,遗传流行病学研究中使用的著名的病例对照检验是在两个所考虑的风险因素相互独立的假设下推导出来的。然而,当这些假设不成立时,那些检验程序可能会对假阳性率和假阴性率产生不利影响。我们建议使用参数化的copula函数来对联合分布进行建模,而对两个风险因素的边缘分布完全不做具体规定。提出了一种统一的方法来估计/检验相互作用效应。这种方法非常灵活,可以应用于研究连续或离散的两个风险因素之间的相互作用。一项模拟研究表明,所提出的方法通常比在标准逻辑回归下推导出来的、未指定两个风险因素之间关系的传统稳健检验更具效能。当两个风险因素在对照人群中确实独立时,所提出方法的性能与病例对照检验相当。与病例对照检验不同,当独立性假设不成立时,所提出的检验仍然可以保持正确的I型错误率。通过两项癌症流行病学研究展示了所提出程序的应用。

相似文献

本文引用的文献

5
Lung cancer susceptibility locus at 5p15.33.位于5号染色体短臂15.33区域的肺癌易感基因座。
Nat Genet. 2008 Dec;40(12):1404-6. doi: 10.1038/ng.254. Epub 2008 Nov 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验