Suppr超能文献

半竞争风险数据的半参数基于copula回归模型的两阶段伪最大似然估计

Two-stage pseudo maximum likelihood estimation of semiparametric copula-based regression models for semi-competing risks data.

作者信息

Arachchige Sakie J, Chen Xinyuan, Zhou Qian M

机构信息

Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, USA.

出版信息

Lifetime Data Anal. 2025 Jan;31(1):52-75. doi: 10.1007/s10985-024-09640-z. Epub 2024 Oct 23.

Abstract

We propose a two-stage estimation procedure for a copula-based model with semi-competing risks data, where the non-terminal event is subject to dependent censoring by the terminal event, and both events are subject to independent censoring. With a copula-based model, the marginal survival functions of individual event times are specified by semiparametric transformation models, and the dependence between the bivariate event times is specified by a parametric copula function. For the estimation procedure, in the first stage, the parameters associated with the marginal of the terminal event are estimated using only the corresponding observed outcomes, and in the second stage, the marginal parameters for the non-terminal event time and the copula parameter are estimated together via maximizing a pseudo-likelihood function based on the joint distribution of the bivariate event times. We derived the asymptotic properties of the proposed estimator and provided an analytic variance estimator for inference. Through simulation studies, we showed that our approach leads to consistent estimates with less computational cost and more robustness than the one-stage procedure developed in Chen YH (Lifetime Data Anal 18:36-57, 2012), where all parameters were estimated simultaneously. In addition, our approach demonstrates more desirable finite-sample performances over another existing two-stage estimation method proposed in Zhu H et al., (Commu Statistics-Theory Methods 51(22):7830-7845, 2021) . An R package PMLE4SCR is developed to implement our proposed method.

摘要

我们针对具有半竞争风险数据的基于copula的模型提出了一种两阶段估计程序,其中非终端事件受到终端事件的相依删失影响,且两个事件都受到独立删失影响。在基于copula的模型中,单个事件时间的边际生存函数由半参数变换模型指定,二元事件时间之间的相依性由参数化copula函数指定。对于估计程序,在第一阶段,仅使用相应的观察结果来估计与终端事件边际相关的参数,而在第二阶段,通过基于二元事件时间的联合分布最大化伪似然函数,共同估计非终端事件时间的边际参数和copula参数。我们推导了所提出估计量的渐近性质,并提供了一个用于推断的解析方差估计量。通过模拟研究,我们表明,与Chen YH(《寿命数据分析》18:36 - 57,2012)中开发的单阶段程序相比,我们的方法能以更低的计算成本和更高的稳健性得到一致的估计,在单阶段程序中所有参数是同时估计的。此外,与Zhu H等人(《通信统计 - 理论方法》51(22):7830 - 7845,2021)提出的另一种现有的两阶段估计方法相比,我们的方法展示出更理想的有限样本性能。我们开发了一个R包PMLE4SCR来实现我们提出的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验