Suppr超能文献

用于主成分分析和奇异值分解分布式计算的随机算法。

Randomized algorithms for distributed computation of principal component analysis and singular value decomposition.

作者信息

Li Huamin, Kluger Yuval, Tygert Mark

机构信息

Yale University, Program in Applied Mathematics, 51 Prospect St., New Haven, CT 06510.

Yale University, School of Medicine, Department of Pathology, Suite 505L, 300 George St., New Haven, CT 06520.

出版信息

Adv Comput Math. 2018 Oct;44(5):1651-1672. doi: 10.1007/s10444-018-9600-1. Epub 2018 Mar 19.

Abstract

Randomized algorithms provide solutions to two ubiquitous problems: (1) the distributed calculation of a principal component analysis or singular value decomposition of a highly rectangular matrix, and (2) the distributed calculation of a low-rank approximation (in the form of a singular value decomposition) to an arbitrary matrix. Carefully honed algorithms yield results that are uniformly superior to those of the stock, deterministic implementations in Spark (the popular platform for distributed computation); in particular, whereas the stock software will without warning return left singular vectors that are far from numerically orthonormal, a significantly burnished randomized implementation generates left singular vectors that are numerically orthonormal to nearly the machine precision.

摘要

随机算法为两个普遍存在的问题提供了解决方案

(1)对高度矩形矩阵进行主成分分析或奇异值分解的分布式计算,以及(2)对任意矩阵进行低秩近似(以奇异值分解的形式)的分布式计算。经过精心优化的算法所产生的结果始终优于Spark(分布式计算的流行平台)中现有的确定性实现;特别是,现有的软件会在没有警告的情况下返回数值上远非正交的左奇异向量,而经过显著优化的随机实现所生成的左奇异向量在数值上几乎达到机器精度的正交。

相似文献

4
svt: Singular Value Thresholding in MATLAB.svt:MATLAB中的奇异值阈值处理
J Stat Softw. 2017;81(2). doi: 10.18637/jss.v081.c02. Epub 2017 Nov 8.
5
Biclustering via sparse singular value decomposition.基于稀疏奇异值分解的双聚类
Biometrics. 2010 Dec;66(4):1087-95. doi: 10.1111/j.1541-0420.2010.01392.x.
6
Patch-Based Image Inpainting via Two-Stage Low Rank Approximation.基于两阶段低秩逼近的基于补丁的图像修复。
IEEE Trans Vis Comput Graph. 2018 Jun;24(6):2023-2036. doi: 10.1109/TVCG.2017.2702738. Epub 2017 May 9.
7
Fast Randomized Singular Value Thresholding for Low-Rank Optimization.快速随机奇异值阈值化的低秩优化。
IEEE Trans Pattern Anal Mach Intell. 2018 Feb;40(2):376-391. doi: 10.1109/TPAMI.2017.2677440. Epub 2017 Mar 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验