Liang Faming, Shi Runmin, Mo Qianxing
Department of Biostatistics, University of Florida, Gainesville, FL 32611,
Department of Statistics, University of Florida, Gainesville, FL 32611.
Stat Interface. 2016;9(4):453-459. doi: 10.4310/SII.2016.v9.n4.a5. Epub 2016 Sep 14.
We propose a new SVD algorithm based on the split-and- merge strategy, which possesses an embarrassingly parallel structure and thus can be efficiently implemented on a distributed or multicore machine. The new algorithm can also be implemented in serial for online eigen-analysis. The new algorithm is particularly suitable for big data problems: Its embarrassingly parallel structure renders it usable for feature screening, while this has been beyond the ability of the existing parallel SVD algorithms.
我们提出了一种基于分割合并策略的新奇异值分解(SVD)算法,该算法具有易于并行的结构,因此可以在分布式或多核机器上高效实现。新算法也可以串行实现用于在线特征分析。新算法特别适用于大数据问题:其易于并行的结构使其可用于特征筛选,而这是现有并行SVD算法所无法做到的。