Suppr超能文献

先前静息状态下额叶θ节律对随后运动想象脑机接口性能的影响。

Effects of Frontal Theta Rhythms in a Prior Resting State on the Subsequent Motor Imagery Brain-Computer Interface Performance.

作者信息

Kang Jae-Hwan, Youn Joosang, Kim Sung-Hee, Kim Junsuk

机构信息

AI Grand ICT Research Center, Dong-eui University, Busan, South Korea.

Department of Industrial ICT Engineering, Dong-eui University, Busan, South Korea.

出版信息

Front Neurosci. 2021 Aug 13;15:663101. doi: 10.3389/fnins.2021.663101. eCollection 2021.

Abstract

Dealing with subjects who are unable to attain a proper level of performance, that is, those with brain-computer interface (BCI) illiteracy or BCI inefficients, is still a major issue in human electroencephalography (EEG) BCI systems. The most suitable approach to address this issue is to analyze the EEG signals of individual subjects independently recorded before the main BCI tasks, to evaluate their performance on these tasks. This study mainly focused on non-linear analyses and deep learning techniques to investigate the significant relationship between the intrinsic characteristics of a prior idle resting state and the subsequent BCI performance. To achieve this main objective, a public EEG motor/movement imagery dataset that constituted two individual EEG signals recorded from an idle resting state and a motor imagery BCI task was used in this study. For the EEG processing in the prior resting state, spectral analysis but also non-linear analyses, such as sample entropy, permutation entropy, and recurrent quantification analyses (RQA), were performed to obtain individual groups of EEG features to represent intrinsic EEG characteristics in the subject. For the EEG signals in the BCI tasks, four individual decoding methods, as a filter-bank common spatial pattern-based classifier and three types of convolution neural network-based classifiers, quantified the subsequent BCI performance in the subject. Statistical linear regression and ANOVA with analyses verified the significant relationship between non-linear EEG features in the prior resting state and three types of BCI performance as low-, intermediate-, and high-performance groups that were statistically discriminated by the subsequent BCI performance. As a result, we found that the frontal theta rhythm ranging from 4 to 8 Hz during the eyes open condition was highly associated with the subsequent BCI performance. The RQA findings that higher determinism and lower mean recurrent time were mainly observed in higher-performance groups indicate that more regular and stable properties in the EEG signals over the frontal regions during the prior resting state would provide a critical clue to assess an individual BCI ability in the following motor imagery task.

摘要

在人类脑电图(EEG)脑机接口(BCI)系统中,处理那些无法达到适当表现水平的受试者,即那些存在BCI文盲或BCI低效问题的受试者,仍然是一个主要问题。解决这个问题最合适的方法是独立分析在主要BCI任务之前单独记录的个体受试者的EEG信号,以评估他们在这些任务上的表现。本研究主要聚焦于非线性分析和深度学习技术,以探究先前空闲静息状态的内在特征与后续BCI表现之间的显著关系。为实现这一主要目标,本研究使用了一个公共的EEG运动/运动想象数据集,该数据集包含从空闲静息状态和运动想象BCI任务记录的两个个体EEG信号。对于先前静息状态下的EEG处理,进行了频谱分析以及非线性分析,如样本熵、排列熵和递归定量分析(RQA),以获得代表受试者内在EEG特征的个体EEG特征组。对于BCI任务中的EEG信号,四种个体解码方法,即基于滤波器组公共空间模式的分类器和三种基于卷积神经网络的分类器,量化了受试者后续的BCI表现。统计线性回归和带有分析的方差分析验证了先前静息状态下的非线性EEG特征与通过后续BCI表现进行统计区分的低、中、高性能组的三种BCI表现之间的显著关系。结果,我们发现睁眼状态下4至8Hz的额部θ节律与后续BCI表现高度相关。RQA结果表明,在高性能组中主要观察到更高的确定性和更低的平均递归时间,这表明先前静息状态下额叶区域EEG信号中更规则和稳定的特性将为评估后续运动想象任务中的个体BCI能力提供关键线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da4b/8414888/5a3c7d1798c6/fnins-15-663101-g001.jpg

相似文献

1
Effects of Frontal Theta Rhythms in a Prior Resting State on the Subsequent Motor Imagery Brain-Computer Interface Performance.
Front Neurosci. 2021 Aug 13;15:663101. doi: 10.3389/fnins.2021.663101. eCollection 2021.
2
Predicting Inter-session Performance of SMR-Based Brain-Computer Interface Using the Spectral Entropy of Resting-State EEG.
Brain Topogr. 2015 Sep;28(5):680-690. doi: 10.1007/s10548-015-0429-3. Epub 2015 Mar 19.
5
Comparison of subject-independent and subject-specific EEG-based BCI using LDA and SVM classifiers.
Med Biol Eng Comput. 2023 Mar;61(3):835-845. doi: 10.1007/s11517-023-02769-3. Epub 2023 Jan 10.
6
Predicting Motor Imagery Performance From Resting-State EEG Using Dynamic Causal Modeling.
Front Hum Neurosci. 2020 Aug 6;14:321. doi: 10.3389/fnhum.2020.00321. eCollection 2020.
7
9
Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network.
Neuroimage. 2016 Jul 1;134:475-485. doi: 10.1016/j.neuroimage.2016.04.030. Epub 2016 Apr 19.
10
Decoding EEG rhythms offline and online during motor imagery for standing and sitting based on a brain-computer interface.
Front Neuroinform. 2022 Sep 2;16:961089. doi: 10.3389/fninf.2022.961089. eCollection 2022.

引用本文的文献

1
Neurophysiological predictors of deep learning based unilateral upper limb motor imagery classification.
Front Hum Neurosci. 2025 Jul 4;19:1617748. doi: 10.3389/fnhum.2025.1617748. eCollection 2025.
3
Graph-informed convolutional autoencoder to classify brain responses during sleep.
Front Neurosci. 2025 Apr 28;19:1525417. doi: 10.3389/fnins.2025.1525417. eCollection 2025.
4
The Application of Entropy in Motor Imagery Paradigms of Brain-Computer Interfaces.
Brain Sci. 2025 Feb 8;15(2):168. doi: 10.3390/brainsci15020168.
5
Brain state and dynamic transition patterns of motor imagery revealed by the bayes hidden markov model.
Cogn Neurodyn. 2024 Oct;18(5):2455-2470. doi: 10.1007/s11571-024-10099-9. Epub 2024 Mar 27.

本文引用的文献

1
Noninvasive Brain-Computer Interfaces Based on Sensorimotor Rhythms.
Proc IEEE Inst Electr Electron Eng. 2015 Jun;103(6):907-925. doi: 10.1109/jproc.2015.2407272. Epub 2015 May 20.
2
Frontal brain areas are more involved during motor imagery than during motor execution/preparation of a response sequence.
Int J Psychophysiol. 2021 Jun;164:71-86. doi: 10.1016/j.ijpsycho.2021.02.020. Epub 2021 Feb 26.
3
Sensorimotor Functional Connectivity: A Neurophysiological Factor Related to BCI Performance.
Front Neurosci. 2020 Dec 18;14:575081. doi: 10.3389/fnins.2020.575081. eCollection 2020.
4
Intralobular and Interlobular Parietal Functional Network Correlated to MI-BCI Performance.
IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):2671-2680. doi: 10.1109/TNSRE.2020.3038657. Epub 2021 Jan 28.
5
Predicting Motor Imagery Performance From Resting-State EEG Using Dynamic Causal Modeling.
Front Hum Neurosci. 2020 Aug 6;14:321. doi: 10.3389/fnhum.2020.00321. eCollection 2020.
6
Executive functions in motor imagery: support for the motor-cognitive model over the functional equivalence model.
Exp Brain Res. 2020 Apr;238(4):931-944. doi: 10.1007/s00221-020-05756-4. Epub 2020 Mar 16.
8
Functional disconnection of associative cortical areas predicts performance during BCI training.
Neuroimage. 2020 Apr 1;209:116500. doi: 10.1016/j.neuroimage.2019.116500. Epub 2020 Jan 9.
9
Deep learning-based electroencephalography analysis: a systematic review.
J Neural Eng. 2019 Aug 14;16(5):051001. doi: 10.1088/1741-2552/ab260c.
10
Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces.
Med Biol Eng Comput. 2019 Aug;57(8):1709-1725. doi: 10.1007/s11517-019-01989-w. Epub 2019 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验