Suppr超能文献

具身跨模态自我塑造语言与互动:计算认知综述

The Embodied Crossmodal Self Forms Language and Interaction: A Computational Cognitive Review.

作者信息

Röder Frank, Özdemir Ozan, Nguyen Phuong D H, Wermter Stefan, Eppe Manfred

机构信息

Knowledge Technology, Department of Informatics, University of Hamburg, Hamburg, Germany.

出版信息

Front Psychol. 2021 Aug 16;12:716671. doi: 10.3389/fpsyg.2021.716671. eCollection 2021.

Abstract

Human language is inherently embodied and grounded in sensorimotor representations of the self and the world around it. This suggests that the body schema and ideomotor action-effect associations play an important role in language understanding, language generation, and verbal/physical interaction with others. There are computational models that focus purely on non-verbal interaction between humans and robots, and there are computational models for dialog systems that focus only on verbal interaction. However, there is a lack of research that integrates these approaches. We hypothesize that the development of computational models of the self is very appropriate for considering joint verbal and physical interaction. Therefore, they provide the substantial potential to foster the psychological and cognitive understanding of language grounding, and they have significant potential to improve human-robot interaction methods and applications. This review is a first step toward developing models of the self that integrate verbal and non-verbal communication. To this end, we first analyze the relevant findings and mechanisms for language grounding in the psychological and cognitive literature on ideomotor theory. Second, we identify the existing computational methods that implement physical decision-making and verbal interaction. As a result, we outline how the current computational methods can be used to create advanced computational interaction models that integrate language grounding with body schemas and self-representations.

摘要

人类语言本质上是具身化的,并基于自我及周围世界的感觉运动表征。这表明身体图式和观念运动动作 - 效应关联在语言理解、语言生成以及与他人的言语/身体互动中起着重要作用。有一些计算模型纯粹专注于人类与机器人之间的非言语互动,也有一些用于对话系统的计算模型仅专注于言语互动。然而,缺乏将这些方法整合起来的研究。我们假设自我计算模型的发展非常适合考虑言语和身体的联合互动。因此,它们具有促进对语言基础的心理和认知理解的巨大潜力,并且在改善人机交互方法和应用方面具有显著潜力。本综述是朝着开发整合言语和非言语交流的自我模型迈出的第一步。为此,我们首先分析心理和认知文献中关于观念运动理论的语言基础的相关发现和机制。其次,我们确定实现物理决策和言语互动的现有计算方法。结果,我们概述了当前的计算方法如何用于创建将语言基础与身体图式和自我表征整合在一起的高级计算交互模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1807/8415221/704b8d402a87/fpsyg-12-716671-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验