Suppr超能文献

通过选择性共享保护基因组隐私。

Preserving Genomic Privacy via Selective Sharing.

作者信息

Yilmaz Emre, Ji Tianxi, Ayday Erman, Li Pan

机构信息

Case Western Reserve University.

出版信息

Proc ACM Workshop Priv Electron Soc. 2020 Nov;2020:163-179. doi: 10.1145/3411497.3420214. Epub 2020 Nov 9.

Abstract

Although genomic data has significant impact and widespread usage in medical research, it puts individuals' privacy in danger, even if they anonymously or partially share their genomic data. To address this problem, we present a framework that is inspired from differential privacy for sharing individuals' genomic data while preserving their privacy. We assume an individual with some sensitive portion on her genome (e.g., mutations or single nucleotide polymorphisms - SNPs that reveal sensitive information about the individual) that she does not want to share. The goals of the individual are to (i) preserve the privacy of her sensitive data (considering the correlations between the sensitive and non-sensitive part), (ii) preserve the privacy of interdependent data (data that belongs to other individuals that is correlated with her data), and (iii) share as much non-sensitive data as possible to maximize utility of data sharing. As opposed to traditional differential privacy-based data sharing schemes, the proposed scheme does not intentionally add noise to data; it is based on selective sharing of data points. We observe that traditional differential privacy concept does not capture sharing data in such a setting, and hence we first introduce a privacy notation, -indirect privacy, that addresses data sharing in such settings. We show that the proposed framework does not provide sensitive information to the attacker while it provides a high data sharing utility. We also compare the proposed technique with the previous ones and show our advantage both in terms of privacy and data sharing utility.

摘要

尽管基因组数据在医学研究中具有重大影响且应用广泛,但它会危及个人隐私,即便个人以匿名或部分共享其基因组数据的方式也是如此。为解决这一问题,我们提出了一个受差分隐私启发的框架,用于在保护个人隐私的同时共享其基因组数据。我们假设有一个个体,其基因组上存在一些她不想共享的敏感部分(例如,揭示个体敏感信息的突变或单核苷酸多态性——SNPs)。该个体的目标是:(i)保护其敏感数据的隐私(考虑敏感部分与非敏感部分之间的相关性),(ii)保护相互依赖的数据(属于其他个体且与她的数据相关的数据)的隐私,以及(iii)尽可能多地共享非敏感数据,以最大化数据共享的效用。与传统的基于差分隐私的数据共享方案不同,所提出的方案不会故意向数据中添加噪声;它基于数据点的选择性共享。我们观察到传统的差分隐私概念无法适用于这种情况下的数据共享,因此我们首先引入一种隐私表示法——间接隐私,以解决这种情况下的数据共享问题。我们表明,所提出的框架在为攻击者提供高数据共享效用的同时,不会提供敏感信息。我们还将所提出的技术与之前的技术进行了比较,并展示了我们在隐私和数据共享效用方面的优势。

相似文献

1
Preserving Genomic Privacy via Selective Sharing.通过选择性共享保护基因组隐私。
Proc ACM Workshop Priv Electron Soc. 2020 Nov;2020:163-179. doi: 10.1145/3411497.3420214. Epub 2020 Nov 9.
2
Genomic Data Sharing under Dependent Local Differential Privacy.依赖局部差分隐私下的基因组数据共享
CODASPY. 2022 Apr;2022:77-88. doi: 10.1145/3508398.3511519. Epub 2022 Apr 15.
7
Genome Reconstruction Attacks Against Genomic Data-Sharing Beacons.针对基因组数据共享信标的基因组重建攻击。
Proc Priv Enhanc Technol. 2021;2021(3):28-48. doi: 10.2478/popets-2021-0036. Epub 2021 Apr 26.
10
Mechanisms for Hiding Sensitive Genotypes with Information-Theoretic Privacy.利用信息论隐私隐藏敏感基因型的机制
IEEE Trans Inf Theory. 2022 Jun;68(6):4090-4105. doi: 10.1109/tit.2022.3156276. Epub 2022 Mar 3.

引用本文的文献

本文引用的文献

2
Quantifying Differential Privacy under Temporal Correlations.量化时间相关性下的差分隐私
Proc Int Conf Data Eng. 2017 Apr;2017:821-832. doi: 10.1109/ICDE.2017.132. Epub 2017 May 18.
4
Privacy in the Genomic Era.基因组时代的隐私问题。
ACM Comput Surv. 2015 Sep;48(1). doi: 10.1145/2767007.
5
Privacy Risks from Genomic Data-Sharing Beacons.基因组数据共享信标带来的隐私风险。
Am J Hum Genet. 2015 Nov 5;97(5):631-46. doi: 10.1016/j.ajhg.2015.09.010. Epub 2015 Oct 29.
7
Identifying personal genomes by surname inference.姓氏推断识别个人基因组。
Science. 2013 Jan 18;339(6117):321-4. doi: 10.1126/science.1229566.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验