Li Rui, Nie Shuqing, Miao Chang, Xin Yu, Mou Houyi, Xu Guanli, Xiao Wei
College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, P. R. China.
College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, P. R. China.
J Colloid Interface Sci. 2022 Jan 15;606(Pt 2):1042-1054. doi: 10.1016/j.jcis.2021.08.112. Epub 2021 Aug 18.
The nitrogen-doped carbon (NC) coating encapsulating heterostructural Sn/SnO microcube powders (Sn/SnO@NC) are successfully fabricated through hydrothermal, polymerization of hydrogel, and carbonization processes, in which the SnO precursor powders exhibit regular microcube structure and uniform size distribution in the presence of optimized NH·HO (3.0 mL of 1.0 mol/L). Interestingly, the precursor powders are easily subjected to a disproportionated reaction to yield the desirable heterostructural Sn/SnO@NC microcube powders after being calcined at 600 °C in N atmosphere in the presence of home-made hydrogel. The coin cells assembled with the Sn/SnO@NC electrode present a high initial discharge specific capacity (1058 mAh g at 100 mA g), improved rate capability (an excellent D value of 2.82 × 10 cm s) and enhanced cycling stability (a reversible discharge specific capacity of 486.5 mAh g after 100 cycles at 100 mA g). The enhanced electrochemical performance can be partly ascribed to the heterostructural microcube that can accelerate the transfer rate of lithium ions by shortening the transmission paths, and be partly to the NC coating that can accommodate the volume effect and contribute to partial lithium storage capacity. Therefore, the strategy may be able to extend the fabrication of Sn/SnO heterostructural microcube powders and further application as promising anode materials in lithium ion batteries.
通过水热法、水凝胶聚合和碳化过程成功制备了包裹异质结构Sn/SnO微立方粉末的氮掺杂碳(NC)涂层(Sn/SnO@NC),其中在优化的NH·HO(3.0 mL 1.0 mol/L)存在下,SnO前驱体粉末呈现出规则的微立方结构和均匀的尺寸分布。有趣的是,前驱体粉末在自制水凝胶存在下于N气氛中600°C煅烧后,容易发生歧化反应,从而得到所需的异质结构Sn/SnO@NC微立方粉末。用Sn/SnO@NC电极组装的硬币电池具有较高的初始放电比容量(100 mA g时为1058 mAh g)、改善的倍率性能(出色的D值为2.82×10 cm s)和增强的循环稳定性(100 mA g下100次循环后可逆放电比容量为486.5 mAh g)。电化学性能的增强部分归因于异质结构微立方,它可以通过缩短传输路径来加速锂离子的传输速率,部分归因于NC涂层,它可以适应体积效应并有助于部分锂存储容量。因此,该策略可能能够扩展Sn/SnO异质结构微立方粉末的制备,并进一步作为锂离子电池中有前景的负极材料应用。