Suppr超能文献

用于卓越锂离子存储的ZIF-L衍生的Zns/Mos@NC负极材料的制备

The Fabrication of ZIF-L Derived Zns/Mos@NC Anode Materials for Remarkable Lithium-Ion Storage.

作者信息

Wang Jian, Zhang Baixue, Kang Kai, Li Peihua, Zhang Wanggang, Liu Yiming

机构信息

College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.

College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.

出版信息

Chemistry. 2024 Dec 10;30(69):e202402940. doi: 10.1002/chem.202402940. Epub 2024 Nov 3.

Abstract

The enhancement of electrochemical performance in lithium-ion batteries can be achieved through the incorporation of MoS with carbon materials and various metal sulfides. In this study, a ZnS/MoS heterostructure was developed, featuring a two-dimensional nitrogen-doped carbon nanosheet (NC) backbone. The synthesis of ZnMoZIF-L precursors was accomplished by introducing a Mo source in a 1 : 1 molar ratio during the ZIF-L synthesis process. Following high-temperature carbonization and vulcanization treatment, ZnS/MoS@NC composite materials were successfully synthesized. Compared to the unvulcanized ZnO/MoO@NC and MoS samples, the ZnS/MoS@NC composite exhibits remarkable lithium storage performance. At a current density of 500 mA g, the initial reversible capacity capacity is still as high as 1674 mAh g. Furthermore, this composite material demonstrates optimal rate capabilities and a significant contribution to pseudocapacitance. The nitrogen-doped carbon framework effectively mitigates volume changes, while the heterostructural design provides more active sites for lithium-ions, thereby enhancing lithium storage performance.

摘要

通过将MoS与碳材料及各种金属硫化物结合,可以实现锂离子电池电化学性能的提升。在本研究中,开发了一种具有二维氮掺杂碳纳米片(NC)骨架的ZnS/MoS异质结构。通过在ZIF-L合成过程中以1:1的摩尔比引入Mo源来完成ZnMoZIF-L前驱体的合成。经过高温碳化和硫化处理后,成功合成了ZnS/MoS@NC复合材料。与未硫化的ZnO/MoO@NC和MoS样品相比,ZnS/MoS@NC复合材料表现出卓越的锂存储性能。在500 mA g的电流密度下,初始可逆容量仍高达1674 mAh g。此外,这种复合材料展现出优异的倍率性能以及对赝电容的显著贡献。氮掺杂碳骨架有效缓解了体积变化,而异质结构设计为锂离子提供了更多活性位点,从而提升了锂存储性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验