Suppr超能文献

一种基于相变存储器的受脑启发的稳态神经元,用于高效神经形态计算。

A Brain-Inspired Homeostatic Neuron Based on Phase-Change Memories for Efficient Neuromorphic Computing.

作者信息

Muñoz-Martin Irene, Bianchi Stefano, Hashemkhani Shahin, Pedretti Giacomo, Melnic Octavian, Ielmini Daniele

机构信息

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milan, Italy.

出版信息

Front Neurosci. 2021 Aug 19;15:709053. doi: 10.3389/fnins.2021.709053. eCollection 2021.

Abstract

One of the main goals of neuromorphic computing is the implementation and design of systems capable of dynamic evolution with respect to their own experience. In biology, synaptic scaling is the homeostatic mechanism which controls the frequency of neural spikes within stable boundaries for improved learning activity. To introduce such control mechanism in a hardware spiking neural network (SNN), we present here a novel artificial neuron based on phase change memory (PCM) devices capable of internal regulation via homeostatic and plastic phenomena. We experimentally show that this mechanism increases the robustness of the system thus optimizing the multi-pattern learning under spike-timing-dependent plasticity (STDP). It also improves the continual learning capability of hybrid supervised-unsupervised convolutional neural networks (CNNs), in terms of both resilience and accuracy. Furthermore, the use of neurons capable of self-regulating their fire responsivity as a function of the PCM internal state enables the design of dynamic networks. In this scenario, we propose to use the PCM-based neurons to design bio-inspired recurrent networks for autonomous decision making in navigation tasks. The agent relies on neuronal spike-frequency adaptation (SFA) to explore the environment via penalties and rewards. Finally, we show that the conductance drift of the PCM devices, contrarily to the applications in neural network accelerators, can improve the overall energy efficiency of neuromorphic computing by implementing bio-plausible active forgetting.

摘要

神经形态计算的主要目标之一是实现和设计能够根据自身经验进行动态演化的系统。在生物学中,突触缩放是一种稳态机制,它将神经尖峰的频率控制在稳定范围内,以改善学习活动。为了在硬件脉冲神经网络(SNN)中引入这种控制机制,我们在此提出一种基于相变存储器(PCM)器件的新型人工神经元,它能够通过稳态和可塑性现象进行内部调节。我们通过实验表明,这种机制提高了系统的鲁棒性,从而在基于脉冲时间依赖可塑性(STDP)的情况下优化了多模式学习。它还在弹性和准确性方面提高了混合监督 - 无监督卷积神经网络(CNN)的持续学习能力。此外,使用能够根据PCM内部状态自我调节其激发响应性的神经元,能够设计动态网络。在这种情况下,我们建议使用基于PCM的神经元来设计受生物启发的循环网络,用于导航任务中的自主决策。智能体依靠神经元脉冲频率适应(SFA)通过惩罚和奖励来探索环境。最后,我们表明,与神经网络加速器中的应用相反,PCM器件的电导漂移可以通过实现生物似然的主动遗忘来提高神经形态计算的整体能量效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81a0/8417123/85bd98804d3c/fnins-15-709053-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验