Suppr超能文献

用于脉冲神经网络中高效无监督学习的非线性忆阻突触动力学

Non-linear Memristive Synaptic Dynamics for Efficient Unsupervised Learning in Spiking Neural Networks.

作者信息

Brivio Stefano, Ly Denys R B, Vianello Elisa, Spiga Sabina

机构信息

CNR - IMM, Unit of Agrate Brianza, Agrate Brianza, Italy.

Université Grenoble Alpes, CEA, Leti, Grenoble, France.

出版信息

Front Neurosci. 2021 Feb 1;15:580909. doi: 10.3389/fnins.2021.580909. eCollection 2021.

Abstract

Spiking neural networks (SNNs) are a computational tool in which the information is coded into spikes, as in some parts of the brain, differently from conventional neural networks (NNs) that compute over real-numbers. Therefore, SNNs can implement intelligent information extraction in real-time at the edge of data acquisition and correspond to a complementary solution to conventional NNs working for cloud-computing. Both NN classes face hardware constraints due to limited computing parallelism and separation of logic and memory. Emerging memory devices, like resistive switching memories, phase change memories, or memristive devices in general are strong candidates to remove these hurdles for NN applications. The well-established training procedures of conventional NNs helped in defining the desiderata for memristive device dynamics implementing synaptic units. The generally agreed requirements are a linear evolution of memristive conductance upon stimulation with train of identical pulses and a symmetric conductance change for conductance increase and decrease. Conversely, little work has been done to understand the main properties of memristive devices supporting efficient SNN operation. The reason lies in the lack of a background theory for their training. As a consequence, requirements for NNs have been taken as a reference to develop memristive devices for SNNs. In the present work, we show that, for efficient CMOS/memristive SNNs, the requirements for synaptic memristive dynamics are very different from the needs of a conventional NN. System-level simulations of a SNN trained to classify hand-written digit images through a spike timing dependent plasticity protocol are performed considering various linear and non-linear plausible synaptic memristive dynamics. We consider memristive dynamics bounded by artificial hard conductance values and limited by the natural dynamics evolution toward asymptotic values (soft-boundaries). We quantitatively analyze the impact of resolution and non-linearity properties of the synapses on the network training and classification performance. Finally, we demonstrate that the non-linear synapses with hard boundary values enable higher classification performance and realize the best trade-off between classification accuracy and required training time. With reference to the obtained results, we discuss how memristive devices with non-linear dynamics constitute a technologically convenient solution for the development of on-line SNN training.

摘要

脉冲神经网络(SNN)是一种计算工具,其中信息被编码为脉冲,就像大脑的某些部分一样,这与在实数上进行计算的传统神经网络(NN)不同。因此,SNN可以在数据采集边缘实时实现智能信息提取,并且是用于云计算的传统NN的一种补充解决方案。由于计算并行性有限以及逻辑与内存分离,这两种神经网络都面临硬件限制。新兴的存储设备,如电阻式开关存储器、相变存储器或一般的忆阻器件,是消除NN应用这些障碍的有力候选者。传统NN成熟的训练程序有助于定义实现突触单元的忆阻器件动力学的需求。普遍认可的要求是,在用相同脉冲序列刺激时,忆阻电导呈线性变化,并且电导增加和减少时的电导变化对称。相反,对于理解支持高效SNN运行的忆阻器件的主要特性,人们所做的工作很少。原因在于缺乏其训练的背景理论。因此,NN的需求被用作开发用于SNN的忆阻器件的参考。在本工作中,我们表明,对于高效的CMOS/忆阻SNN,突触忆阻动力学的要求与传统NN的需求非常不同。通过考虑各种线性和非线性合理的突触忆阻动力学,对一个通过脉冲时间依赖可塑性协议训练以对手写数字图像进行分类的SNN进行了系统级模拟。我们考虑了由人工硬电导值界定且受自然动力学向渐近值演化限制(软边界)的忆阻动力学。我们定量分析了突触的分辨率和非线性特性对网络训练和分类性能的影响。最后,我们证明具有硬边界值的非线性突触能够实现更高的分类性能,并在分类准确率和所需训练时间之间实现最佳权衡。参考所获得的结果,我们讨论了具有非线性动力学的忆阻器件如何构成在线SNN训练开发的技术上便利的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e510/7901913/547fb3c76f66/fnins-15-580909-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验