Suppr超能文献

模型降维在低维流形上捕捉随机伽马振荡。

Model Reduction Captures Stochastic Gamma Oscillations on Low-Dimensional Manifolds.

作者信息

Cai Yuhang, Wu Tianyi, Tao Louis, Xiao Zhuo-Cheng

机构信息

Department of Statistics, University of Chicago, Chicago, IL, United States.

School of Mathematical Sciences, Peking University, Beijing, China.

出版信息

Front Comput Neurosci. 2021 Aug 17;15:678688. doi: 10.3389/fncom.2021.678688. eCollection 2021.

Abstract

Gamma frequency oscillations (25-140 Hz), observed in the neural activities within many brain regions, have long been regarded as a physiological basis underlying many brain functions, such as memory and attention. Among numerous theoretical and computational modeling studies, gamma oscillations have been found in biologically realistic spiking network models of the primary visual cortex. However, due to its high dimensionality and strong non-linearity, it is generally difficult to perform detailed theoretical analysis of the emergent gamma dynamics. Here we propose a suite of Markovian model reduction methods with varying levels of complexity and apply it to spiking network models exhibiting heterogeneous dynamical regimes, ranging from nearly homogeneous firing to strong synchrony in the gamma band. The reduced models not only successfully reproduce gamma oscillations in the full model, but also exhibit the same dynamical features as we vary parameters. Most remarkably, the invariant measure of the coarse-grained Markov process reveals a two-dimensional surface in state space upon which the gamma dynamics mainly resides. Our results suggest that the statistical features of gamma oscillations strongly depend on the subthreshold neuronal distributions. Because of the generality of the Markovian assumptions, our dimensional reduction methods offer a powerful toolbox for theoretical examinations of other complex cortical spatio-temporal behaviors observed in both neurophysiological experiments and numerical simulations.

摘要

γ频率振荡(25 - 140赫兹)在许多脑区的神经活动中都能观察到,长期以来一直被视为许多脑功能(如记忆和注意力)的生理基础。在众多理论和计算建模研究中,在初级视觉皮层的生物现实脉冲网络模型中发现了γ振荡。然而,由于其高维度和强非线性,通常很难对出现的γ动力学进行详细的理论分析。在此,我们提出了一套具有不同复杂程度的马尔可夫模型约简方法,并将其应用于表现出异质动力学状态的脉冲网络模型,这些状态从几乎均匀的放电到γ波段的强同步。约简后的模型不仅成功地在完整模型中重现了γ振荡,而且在我们改变参数时还展现出相同的动力学特征。最显著的是,粗粒化马尔可夫过程的不变测度揭示了状态空间中的一个二维表面,γ动力学主要存在于此。我们的结果表明,γ振荡的统计特征强烈依赖于阈下神经元分布。由于马尔可夫假设的普遍性,我们的降维方法为理论研究神经生理实验和数值模拟中观察到的其他复杂皮层时空行为提供了一个强大的工具箱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/514e/8418102/6efb3423d615/fncom-15-678688-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验