Li Yao, Xu Hui
Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA, 01002, USA.
Department of Mathematics, Amherst College, Amherst, MA, 01002, USA.
J Math Biol. 2019 Sep;79(4):1169-1204. doi: 10.1007/s00285-019-01389-6. Epub 2019 Jul 10.
This paper studies a nonlinear dynamical phenomenon called the multiple firing event (MFE) in a spatially heterogeneous stochastic neural field model, which is extended from that in our previous paper (Li et al. in J Math Biol 78:83-115, 2018). MFEs are a partially synchronized spiking barrages that are believed to be responsible for the Gamma oscillation. Rigorous results about the stochastic stability and the law of large numbers are proved, which further imply the well-definedness and computability of many quantities related to MFEs. Then we devote to study spatial and temporal properties of MFEs. Our key finding is that MFEs are spatially correlated but the spatial correlation decays quickly. Detailed mathematical justifications are made based on our qualitative models that aim to demonstrate the mechanism of MFEs.
本文研究了一种在空间异质随机神经场模型中的非线性动力学现象,称为多发放事件(MFE),该模型是在我们之前的论文(Li等人,《数学生物学杂志》78:83 - 115,2018)基础上扩展而来的。多发放事件是一种部分同步的尖峰脉冲群,被认为是伽马振荡的成因。我们证明了关于随机稳定性和大数定律的严格结果,这进一步意味着与多发放事件相关的许多量的明确性和可计算性。然后我们致力于研究多发放事件的时空特性。我们的关键发现是多发放事件在空间上是相关的,但空间相关性衰减很快。基于我们旨在揭示多发放事件机制的定性模型给出了详细的数学论证。