Li Zhen, Lee Hee Sun, Darve Eric, Karniadakis George Em
Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA.
Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA.
J Chem Phys. 2017 Jan 7;146(1):014104. doi: 10.1063/1.4973347.
Memory effects are often introduced during coarse-graining of a complex dynamical system. In particular, a generalized Langevin equation (GLE) for the coarse-grained (CG) system arises in the context of Mori-Zwanzig formalism. Upon a pairwise decomposition, GLE can be reformulated into its pairwise version, i.e., non-Markovian dissipative particle dynamics (DPD). GLE models the dynamics of a single coarse particle, while DPD considers the dynamics of many interacting CG particles, with both CG systems governed by non-Markovian interactions. We compare two different methods for the practical implementation of the non-Markovian interactions in GLE and DPD systems. More specifically, a direct evaluation of the non-Markovian (NM) terms is performed in LE-NM and DPD-NM models, which requires the storage of historical information that significantly increases computational complexity. Alternatively, we use a few auxiliary variables in LE-AUX and DPD-AUX models to replace the non-Markovian dynamics with a Markovian dynamics in a higher dimensional space, leading to a much reduced memory footprint and computational cost. In our numerical benchmarks, the GLE and non-Markovian DPD models are constructed from molecular dynamics (MD) simulations of star-polymer melts. Results show that a Markovian dynamics with auxiliary variables successfully generates equivalent non-Markovian dynamics consistent with the reference MD system, while maintaining a tractable computational cost. Also, transient subdiffusion of the star-polymers observed in the MD system can be reproduced by the coarse-grained models. The non-interacting particle models, LE-NM/AUX, are computationally much cheaper than the interacting particle models, DPD-NM/AUX. However, the pairwise models with momentum conservation are more appropriate for correctly reproducing the long-time hydrodynamics characterised by an algebraic decay in the velocity autocorrelation function.
在复杂动力学系统的粗粒化过程中,常常会引入记忆效应。特别是,在 Mori-Zwanzig 形式体系的背景下,粗粒化(CG)系统会出现广义 Langevin 方程(GLE)。通过成对分解,GLE 可以重新表述为其成对形式,即非马尔可夫耗散粒子动力学(DPD)。GLE 对单个粗粒子的动力学进行建模,而 DPD 考虑许多相互作用的 CG 粒子的动力学,这两种 CG 系统都由非马尔可夫相互作用支配。我们比较了在 GLE 和 DPD 系统中实际实现非马尔可夫相互作用的两种不同方法。更具体地说,在 LE-NM 和 DPD-NM 模型中对非马尔可夫(NM)项进行直接评估,这需要存储历史信息,这会显著增加计算复杂度。或者,我们在 LE-AUX 和 DPD-AUX 模型中使用一些辅助变量,在更高维空间中用马尔可夫动力学代替非马尔可夫动力学,从而大大减少内存占用和计算成本。在我们的数值基准测试中,GLE 和非马尔可夫 DPD 模型是根据星形聚合物熔体的分子动力学(MD)模拟构建的。结果表明,带有辅助变量的马尔可夫动力学成功地生成了与参考 MD 系统一致的等效非马尔可夫动力学,同时保持了易于处理的计算成本。此外,粗粒化模型可以重现 MD 系统中观察到的星形聚合物的瞬态亚扩散。非相互作用粒子模型 LE-NM/AUX 在计算上比相互作用粒子模型 DPD-NM/AUX 便宜得多。然而,具有动量守恒的成对模型更适合正确再现以速度自相关函数的代数衰减为特征的长时间流体动力学。